Skip to the content.

beatles

This is the tempo_eval report for the ‘beatles’ corpus.

Reports for other corpora may be found here.

Table of Contents

References for ‘beatles’

References

1.2

Attribute Value
Corpus beatles
Version 1.2
Curator Christopher Harte
Data Source manual annotation
Annotation Tools derived from beat annotations
Annotation Rules median of corresponding inter beat intervals
Annotator, bibtex Harte2010
Annotator, ref_url http://isophonics.net/content/reference-annotations-beatles

Basic Statistics

Reference Size Min Max Avg Stdev Sweet Oct. Start Sweet Oct. Coverage
1.2 179 66.06 184.62 117.45 27.30 79.00 0.84

Table 1: Basic statistics.

CSV JSON LATEX PICKLE

Smoothed Tempo Distribution

Figure 1: Percentage of values in tempo interval.

CSV JSON LATEX PICKLE SVG PDF PNG

Beat-Based Tempo Variation

Figure 2: Fraction of the dataset with beat-annotated tracks with cvar < τ.

CSV JSON LATEX PICKLE SVG PDF PNG

Estimates for ‘beatles’

Estimators

boeck2015/tempodetector2016_default

Attribute Value
Corpus beatles
Version 0.17.dev0
Annotation Tools TempoDetector.2016, madmom, https://github.com/CPJKU/madmom
Annotator, bibtex Boeck2015

boeck2019/multi_task

Attribute Value
Corpus beatles
Version 0.0.1
Annotation Tools model=multi_task, https://github.com/superbock/ISMIR2019
Annotator, bibtex Boeck2019

boeck2019/multi_task_hjdb

Attribute Value
Corpus beatles
Version 0.0.1
Annotation Tools model=multi_task_hjdb, https://github.com/superbock/ISMIR2019
Annotator, bibtex Boeck2019

boeck2020/dar

Attribute Value
Corpus beatles
Version 0.0.1
Annotation Tools https://github.com/superbock/ISMIR2020
Annotator, bibtex Boeck2020

davies2009/mirex_qm_tempotracker

Attribute Value  
Corpus beatles  
Version 1.0  
Annotation Tools QM Tempotracker, Sonic Annotator plugin. https://code.soundsoftware.ac.uk/projects/mirex2013/repository/show/audio_tempo_estimation/qm-tempotracker Note that the current macOS build of ‘qm-vamp-plugins’ was used.  
Annotator, bibtex Davies2009 Davies2007

percival2014/stem

Attribute Value
Corpus beatles
Version 1.0
Annotation Tools percival 2014, ‘tempo’ implementation from Marsyas, http://marsyas.info, git checkout tempo-stem
Annotator, bibtex Percival2014

schreiber2014/default

Attribute Value
Corpus beatles
Version 0.0.1
Annotation Tools schreiber 2014, http://www.tagtraum.com/tempo_estimation.html
Annotator, bibtex Schreiber2014

schreiber2017/ismir2017

Attribute Value
Corpus beatles
Version 0.0.4
Annotation Tools schreiber 2017, model=ismir2017, http://www.tagtraum.com/tempo_estimation.html
Annotator, bibtex Schreiber2017

schreiber2017/mirex2017

Attribute Value
Corpus beatles
Version 0.0.4
Annotation Tools schreiber 2017, model=mirex2017, http://www.tagtraum.com/tempo_estimation.html
Annotator, bibtex Schreiber2017

schreiber2018/cnn

Attribute Value
Corpus beatles
Version 0.0.2
Data Source Hendrik Schreiber, Meinard Müller. A Single-Step Approach to Musical Tempo Estimation Using a Convolutional Neural Network. In Proceedings of the 19th International Society for Music Information Retrieval Conference (ISMIR), Paris, France, Sept. 2018.
Annotation Tools schreiber tempo-cnn (model=cnn), https://github.com/hendriks73/tempo-cnn

schreiber2018/fcn

Attribute Value
Corpus beatles
Version 0.0.2
Data Source Hendrik Schreiber, Meinard Müller. A Single-Step Approach to Musical Tempo Estimation Using a Convolutional Neural Network. In Proceedings of the 19th International Society for Music Information Retrieval Conference (ISMIR), Paris, France, Sept. 2018.
Annotation Tools schreiber tempo-cnn (model=fcn), https://github.com/hendriks73/tempo-cnn

schreiber2018/ismir2018

Attribute Value
Corpus beatles
Version 0.0.2
Data Source Hendrik Schreiber, Meinard Müller. A Single-Step Approach to Musical Tempo Estimation Using a Convolutional Neural Network. In Proceedings of the 19th International Society for Music Information Retrieval Conference (ISMIR), Paris, France, Sept. 2018.
Annotation Tools schreiber tempo-cnn (model=ismir2018), https://github.com/hendriks73/tempo-cnn

Basic Statistics

Estimator Size Min Max Avg Stdev Sweet Oct. Start Sweet Oct. Coverage
boeck2015/tempodetector2016_default 180 45.80 181.82 114.26 28.16 72.00 0.83
boeck2019/multi_task 180 63.02 199.41 114.82 27.23 72.00 0.87
boeck2019/multi_task_hjdb 180 63.83 182.90 116.71 26.92 72.00 0.84
boeck2020/dar 180 58.61 193.94 117.35 29.05 78.00 0.82
davies2009/mirex_qm_tempotracker 180 77.13 184.57 127.49 24.88 87.00 0.96
percival2014/stem 180 50.92 156.60 105.01 23.19 70.00 0.92
schreiber2014/default 180 54.35 149.20 97.61 23.07 67.00 0.89
schreiber2017/ismir2017 180 40.53 174.90 112.25 26.21 72.00 0.87
schreiber2017/mirex2017 180 40.53 206.84 111.57 27.97 72.00 0.84
schreiber2018/cnn 180 58.00 200.00 121.86 31.59 76.00 0.78
schreiber2018/fcn 180 38.00 199.00 116.51 32.40 76.00 0.77
schreiber2018/ismir2018 180 67.00 195.00 120.38 28.06 76.00 0.86

Table 2: Basic statistics.

CSV JSON LATEX PICKLE

Smoothed Tempo Distribution

Figure 3: Percentage of values in tempo interval.

CSV JSON LATEX PICKLE SVG PDF PNG

Accuracy

Accuracy1 is defined as the percentage of correct estimates, allowing a 4% tolerance for individual BPM values.

Accuracy2 additionally permits estimates to be wrong by a factor of 2, 3, 1/2 or 1/3 (so-called octave errors).

See [Gouyon2006].

Note: When comparing accuracy values for different algorithms, keep in mind that an algorithm may have been trained on the test set or that the test set may have even been created using one of the tested algorithms.

Accuracy Results for 1.2

Estimator Accuracy1 Accuracy2
boeck2015/tempodetector2016_default 0.9162 0.9944
boeck2019/multi_task_hjdb 0.8883 0.9777
boeck2020/dar 0.8715 0.9553
schreiber2018/ismir2018 0.8603 0.9721
schreiber2018/fcn 0.8547 0.9832
boeck2019/multi_task 0.8492 0.9777
schreiber2017/ismir2017 0.8492 0.9888
schreiber2017/mirex2017 0.8436 0.9777
schreiber2018/cnn 0.8324 0.9665
percival2014/stem 0.8156 0.9944
davies2009/mirex_qm_tempotracker 0.8045 0.9721
schreiber2014/default 0.6536 0.9050

Table 3: Mean accuracy of estimates compared to version 1.2 with 4% tolerance ordered by Accuracy1.

CSV JSON LATEX PICKLE

Raw data Accuracy1: CSV JSON LATEX PICKLE

Raw data Accuracy2: CSV JSON LATEX PICKLE

Accuracy1 for 1.2

Figure 4: Mean Accuracy1 for estimates compared to version 1.2 depending on tolerance.

CSV JSON LATEX PICKLE SVG PDF PNG

Accuracy2 for 1.2

Figure 5: Mean Accuracy2 for estimates compared to version 1.2 depending on tolerance.

CSV JSON LATEX PICKLE SVG PDF PNG

Differing Items

For which items did a given estimator not estimate a correct value with respect to a given ground truth? Are there items which are either very difficult, not suitable for the task, or incorrectly annotated and therefore never estimated correctly, regardless which estimator is used?

Differing Items Accuracy1

Items with different tempo annotations (Accuracy1, 4% tolerance) in different versions:

1.2 compared with boeck2015/tempodetector2016_default (15 differences): ‘04_-_Beatles_for_Sale/02_-_I’m_a_Loser’ ‘05_-_Help!/02_-_The_Night_Before’ ‘05_-_Help!/03_-_You’ve_Got_To_Hide_Your_Love_Away’ ‘05_-_Help!/05_-_Another_Girl’ ‘05_-_Help!/10_-_You_Like_Me_Too_Much’ ‘06_-_Rubber_Soul/02_-_Norwegian_Wood_(This_Bird_Has_Flown)’ ‘07_-_Revolver/10_-_For_No_One’ ‘07_-_Revolver/11_-_Doctor_Robert’ ‘08_-_Sgt._Pepper’s_Lonely_Hearts_Club_Band/03_-_Lucy_In_The_Sky_With_Diamonds’ ‘08_-_Sgt._Pepper’s_Lonely_Hearts_Club_Band/09_-_When_I’m_Sixty-Four’ ‘09_-_Magical_Mystery_Tour/01_-_Magical_Mystery_Tour’ … CSV

1.2 compared with boeck2019/multi_task (27 differences): ‘02_-_With_the_Beatles/04_-_Don’t_Bother_Me’ ‘02_-_With_the_Beatles/05_-_Little_Child’ ‘02_-_With_the_Beatles/10_-_You_Really_Got_A_Hold_On_Me’ ‘04_-_Beatles_for_Sale/02_-_I’m_a_Loser’ ‘04_-_Beatles_for_Sale/03_-_Baby’s_In_Black’ ‘04_-_Beatles_for_Sale/04_-_Rock_and_Roll_Music’ ‘04_-_Beatles_for_Sale/14_-_Everybody’s_Trying_to_Be_My_Baby’ ‘05_-_Help!/02_-_The_Night_Before’ ‘05_-_Help!/05_-_Another_Girl’ ‘05_-_Help!/10_-_You_Like_Me_Too_Much’ ‘06_-_Rubber_Soul/02_-_Norwegian_Wood_(This_Bird_Has_Flown)’ … CSV

1.2 compared with boeck2019/multi_task_hjdb (20 differences): ‘02_-_With_the_Beatles/04_-_Don’t_Bother_Me’ ‘02_-_With_the_Beatles/10_-_You_Really_Got_A_Hold_On_Me’ ‘04_-_Beatles_for_Sale/02_-_I’m_a_Loser’ ‘04_-_Beatles_for_Sale/04_-_Rock_and_Roll_Music’ ‘04_-_Beatles_for_Sale/14_-_Everybody’s_Trying_to_Be_My_Baby’ ‘05_-_Help!/02_-_The_Night_Before’ ‘05_-_Help!/05_-_Another_Girl’ ‘05_-_Help!/10_-_You_Like_Me_Too_Much’ ‘06_-_Rubber_Soul/10_-_I’m_Looking_Through_You’ ‘06_-_Rubber_Soul/14_-_Run_For_Your_Life’ ‘07_-_Revolver/10_-_For_No_One’ … CSV

1.2 compared with boeck2020/dar (23 differences): ‘02_-_With_the_Beatles/04_-_Don’t_Bother_Me’ ‘04_-_Beatles_for_Sale/02_-_I’m_a_Loser’ ‘05_-_Help!/05_-_Another_Girl’ ‘05_-_Help!/10_-_You_Like_Me_Too_Much’ ‘06_-_Rubber_Soul/08_-_What_Goes_On’ ‘06_-_Rubber_Soul/10_-_I’m_Looking_Through_You’ ‘06_-_Rubber_Soul/14_-_Run_For_Your_Life’ ‘07_-_Revolver/10_-_For_No_One’ ‘08_-_Sgt._Pepper’s_Lonely_Hearts_Club_Band/03_-_Lucy_In_The_Sky_With_Diamonds’ ‘08_-_Sgt._Pepper’s_Lonely_Hearts_Club_Band/08_-_Within_You_Without_You’ ‘09_-_Magical_Mystery_Tour/01_-_Magical_Mystery_Tour’ … CSV

1.2 compared with davies2009/mirex_qm_tempotracker (35 differences): ‘01_-_Please_Please_Me/12_-_A_Taste_Of_Honey’ ‘03_-_A_Hard_Day’s_Night/07_-_Can’t_Buy_Me_Love’ ‘04_-_Beatles_for_Sale/03_-_Baby’s_In_Black’ ‘04_-_Beatles_for_Sale/14_-_Everybody’s_Trying_to_Be_My_Baby’ ‘05_-_Help!/03_-_You’ve_Got_To_Hide_Your_Love_Away’ ‘05_-_Help!/10_-_You_Like_Me_Too_Much’ ‘06_-_Rubber_Soul/02_-_Norwegian_Wood_(This_Bird_Has_Flown)’ ‘08_-_Sgt._Pepper’s_Lonely_Hearts_Club_Band/03_-_Lucy_In_The_Sky_With_Diamonds’ ‘08_-_Sgt._Pepper’s_Lonely_Hearts_Club_Band/13_-_A_Day_In_The_Life’ ‘09_-_Magical_Mystery_Tour/01_-_Magical_Mystery_Tour’ ‘09_-_Magical_Mystery_Tour/02_-_The_Fool_On_The_Hill’ … CSV

1.2 compared with percival2014/stem (33 differences): ‘01_-_Please_Please_Me/01_-_I_Saw_Her_Standing_There’ ‘01_-_Please_Please_Me/08_-_Love_Me_Do’ ‘02_-_With_the_Beatles/03_-_All_My_Loving’ ‘02_-_With_the_Beatles/04_-_Don’t_Bother_Me’ ‘02_-_With_the_Beatles/05_-_Little_Child’ ‘02_-_With_the_Beatles/08_-_Roll_Over_Beethoven’ ‘03_-_A_Hard_Day’s_Night/06_-_Tell_Me_Why’ ‘03_-_A_Hard_Day’s_Night/07_-_Can’t_Buy_Me_Love’ ‘04_-_Beatles_for_Sale/04_-_Rock_and_Roll_Music’ ‘04_-_Beatles_for_Sale/08_-_Eight_Days_a_Week’ ‘04_-_Beatles_for_Sale/10_-_Honey_Don’t’ … CSV

1.2 compared with schreiber2014/default (62 differences): ‘01_-_Please_Please_Me/01_-_I_Saw_Her_Standing_There’ ‘01_-_Please_Please_Me/02_-_Misery’ ‘01_-_Please_Please_Me/05_-_Boys’ ‘01_-_Please_Please_Me/06_-_Ask_Me_Why’ ‘01_-_Please_Please_Me/07_-_Please_Please_Me’ ‘01_-_Please_Please_Me/08_-_Love_Me_Do’ ‘01_-_Please_Please_Me/09_-_P._S._I_Love_You’ ‘01_-_Please_Please_Me/13_-_There’s_A_Place’ ‘02_-_With_the_Beatles/03_-_All_My_Loving’ ‘02_-_With_the_Beatles/04_-_Don’t_Bother_Me’ ‘02_-_With_the_Beatles/05_-_Little_Child’ … CSV

1.2 compared with schreiber2017/ismir2017 (27 differences): ‘02_-_With_the_Beatles/03_-_All_My_Loving’ ‘02_-_With_the_Beatles/04_-_Don’t_Bother_Me’ ‘03_-_A_Hard_Day’s_Night/06_-_Tell_Me_Why’ ‘04_-_Beatles_for_Sale/03_-_Baby’s_In_Black’ ‘04_-_Beatles_for_Sale/10_-_Honey_Don’t’ ‘04_-_Beatles_for_Sale/14_-_Everybody’s_Trying_to_Be_My_Baby’ ‘05_-_Help!/03_-_You’ve_Got_To_Hide_Your_Love_Away’ ‘05_-_Help!/10_-_You_Like_Me_Too_Much’ ‘06_-_Rubber_Soul/02_-_Norwegian_Wood_(This_Bird_Has_Flown)’ ‘07_-_Revolver/10_-_For_No_One’ ‘08_-_Sgt._Pepper’s_Lonely_Hearts_Club_Band/03_-_Lucy_In_The_Sky_With_Diamonds’ … CSV

1.2 compared with schreiber2017/mirex2017 (28 differences): ‘01_-_Please_Please_Me/06_-_Ask_Me_Why’ ‘01_-_Please_Please_Me/08_-_Love_Me_Do’ ‘03_-_A_Hard_Day’s_Night/06_-_Tell_Me_Why’ ‘04_-_Beatles_for_Sale/03_-_Baby’s_In_Black’ ‘04_-_Beatles_for_Sale/10_-_Honey_Don’t’ ‘04_-_Beatles_for_Sale/14_-_Everybody’s_Trying_to_Be_My_Baby’ ‘05_-_Help!/02_-_The_Night_Before’ ‘05_-_Help!/03_-_You’ve_Got_To_Hide_Your_Love_Away’ ‘05_-_Help!/10_-_You_Like_Me_Too_Much’ ‘05_-_Help!/11_-_Tell_Me_What_You_See’ ‘06_-_Rubber_Soul/10_-_I’m_Looking_Through_You’ … CSV

1.2 compared with schreiber2018/cnn (30 differences): ‘02_-_With_the_Beatles/04_-_Don’t_Bother_Me’ ‘03_-_A_Hard_Day’s_Night/09_-_I’ll_Cry_Instead’ ‘04_-_Beatles_for_Sale/02_-_I’m_a_Loser’ ‘04_-_Beatles_for_Sale/12_-_I_Don’t_Want_to_Spoil_the_Party’ ‘05_-_Help!/01_-_Help!’ ‘05_-_Help!/02_-_The_Night_Before’ ‘05_-_Help!/05_-_Another_Girl’ ‘05_-_Help!/08_-_Act_Naturally’ ‘06_-_Rubber_Soul/08_-_What_Goes_On’ ‘06_-_Rubber_Soul/10_-_I’m_Looking_Through_You’ ‘06_-_Rubber_Soul/14_-_Run_For_Your_Life’ … CSV

1.2 compared with schreiber2018/fcn (26 differences): ‘01_-_Please_Please_Me/07_-_Please_Please_Me’ ‘02_-_With_the_Beatles/05_-_Little_Child’ ‘02_-_With_the_Beatles/10_-_You_Really_Got_A_Hold_On_Me’ ‘02_-_With_the_Beatles/11_-_I_Wanna_Be_Your_Man’ ‘03_-_A_Hard_Day’s_Night/06_-_Tell_Me_Why’ ‘03_-_A_Hard_Day’s_Night/09_-_I’ll_Cry_Instead’ ‘04_-_Beatles_for_Sale/02_-_I’m_a_Loser’ ‘04_-_Beatles_for_Sale/08_-_Eight_Days_a_Week’ ‘05_-_Help!/02_-_The_Night_Before’ ‘05_-_Help!/08_-_Act_Naturally’ ‘06_-_Rubber_Soul/08_-_What_Goes_On’ … CSV

1.2 compared with schreiber2018/ismir2018 (25 differences): ‘02_-_With_the_Beatles/03_-_All_My_Loving’ ‘02_-_With_the_Beatles/04_-_Don’t_Bother_Me’ ‘03_-_A_Hard_Day’s_Night/09_-_I’ll_Cry_Instead’ ‘04_-_Beatles_for_Sale/02_-_I’m_a_Loser’ ‘05_-_Help!/02_-_The_Night_Before’ ‘05_-_Help!/05_-_Another_Girl’ ‘05_-_Help!/08_-_Act_Naturally’ ‘06_-_Rubber_Soul/08_-_What_Goes_On’ ‘06_-_Rubber_Soul/14_-_Run_For_Your_Life’ ‘07_-_Revolver/10_-_For_No_One’ ‘08_-_Sgt._Pepper’s_Lonely_Hearts_Club_Band/03_-_Lucy_In_The_Sky_With_Diamonds’ … CSV

None of the estimators estimated the following item ‘correctly’ using Accuracy1: ‘08_-_Sgt._Pepper’s_Lonely_Hearts_Club_Band/03_-_Lucy_In_The_Sky_With_Diamonds’ CSV

Differing Items Accuracy2

Items with different tempo annotations (Accuracy2, 4% tolerance) in different versions:

1.2 compared with boeck2015/tempodetector2016_default (1 differences): ‘08_-_Sgt._Pepper’s_Lonely_Hearts_Club_Band/03_-_Lucy_In_The_Sky_With_Diamonds’ CSV

1.2 compared with boeck2019/multi_task (4 differences): ‘02_-_With_the_Beatles/10_-_You_Really_Got_A_Hold_On_Me’ ‘08_-_Sgt._Pepper’s_Lonely_Hearts_Club_Band/03_-_Lucy_In_The_Sky_With_Diamonds’ ‘11_-_Abbey_Road/06_-_I_Want_You’ ‘12_-_Let_It_Be/04_-_I_Me_Mine’ CSV

1.2 compared with boeck2019/multi_task_hjdb (4 differences): ‘02_-_With_the_Beatles/10_-_You_Really_Got_A_Hold_On_Me’ ‘08_-_Sgt._Pepper’s_Lonely_Hearts_Club_Band/03_-_Lucy_In_The_Sky_With_Diamonds’ ‘11_-_Abbey_Road/06_-_I_Want_You’ ‘12_-_Let_It_Be/04_-_I_Me_Mine’ CSV

1.2 compared with boeck2020/dar (8 differences): ‘08_-_Sgt._Pepper’s_Lonely_Hearts_Club_Band/03_-_Lucy_In_The_Sky_With_Diamonds’ ‘08_-_Sgt._Pepper’s_Lonely_Hearts_Club_Band/08_-_Within_You_Without_You’ ‘09_-_Magical_Mystery_Tour/01_-_Magical_Mystery_Tour’ ‘09_-_Magical_Mystery_Tour/06_-_I_Am_The_Walrus’ ‘09_-_Magical_Mystery_Tour/11_-_All_You_Need_Is_Love’ ‘10CD1_-_The_Beatles/CD1_-_02_-_Dear_Prudence’ ‘11_-_Abbey_Road/06_-_I_Want_You’ ‘11_-_Abbey_Road/09_-_You_Never_Give_Me_Your_Money’ CSV

1.2 compared with davies2009/mirex_qm_tempotracker (5 differences): ‘01_-_Please_Please_Me/12_-_A_Taste_Of_Honey’ ‘04_-_Beatles_for_Sale/03_-_Baby’s_In_Black’ ‘08_-_Sgt._Pepper’s_Lonely_Hearts_Club_Band/03_-_Lucy_In_The_Sky_With_Diamonds’ ‘09_-_Magical_Mystery_Tour/04_-_Blue_Jay_Way’ ‘12_-_Let_It_Be/05_-_Dig_It’ CSV

1.2 compared with percival2014/stem (1 differences): ‘08_-_Sgt._Pepper’s_Lonely_Hearts_Club_Band/03_-_Lucy_In_The_Sky_With_Diamonds’ CSV

1.2 compared with schreiber2014/default (17 differences): ‘04_-_Beatles_for_Sale/03_-_Baby’s_In_Black’ ‘07_-_Revolver/04_-_Love_You_To’ ‘08_-_Sgt._Pepper’s_Lonely_Hearts_Club_Band/03_-_Lucy_In_The_Sky_With_Diamonds’ ‘08_-_Sgt._Pepper’s_Lonely_Hearts_Club_Band/05_-_Fixing_A_Hole’ ‘08_-_Sgt._Pepper’s_Lonely_Hearts_Club_Band/08_-_Within_You_Without_You’ ‘08_-_Sgt._Pepper’s_Lonely_Hearts_Club_Band/13_-_A_Day_In_The_Life’ ‘09_-_Magical_Mystery_Tour/04_-_Blue_Jay_Way’ ‘09_-_Magical_Mystery_Tour/08_-_Strawberry_Fields_Forever’ ‘09_-_Magical_Mystery_Tour/11_-_All_You_Need_Is_Love’ ‘10CD1_-_The_Beatles/CD1_-_10_-_I’m_So_Tired’ ‘10CD2_-_The_Beatles/CD2_-_08_-_Revolution_1’ … CSV

1.2 compared with schreiber2017/ismir2017 (2 differences): ‘04_-_Beatles_for_Sale/03_-_Baby’s_In_Black’ ‘08_-_Sgt._Pepper’s_Lonely_Hearts_Club_Band/03_-_Lucy_In_The_Sky_With_Diamonds’ CSV

1.2 compared with schreiber2017/mirex2017 (4 differences): ‘04_-_Beatles_for_Sale/03_-_Baby’s_In_Black’ ‘05_-_Help!/03_-_You’ve_Got_To_Hide_Your_Love_Away’ ‘08_-_Sgt._Pepper’s_Lonely_Hearts_Club_Band/03_-_Lucy_In_The_Sky_With_Diamonds’ ‘12_-_Let_It_Be/04_-_I_Me_Mine’ CSV

1.2 compared with schreiber2018/cnn (6 differences): ‘08_-_Sgt._Pepper’s_Lonely_Hearts_Club_Band/03_-_Lucy_In_The_Sky_With_Diamonds’ ‘08_-_Sgt._Pepper’s_Lonely_Hearts_Club_Band/13_-_A_Day_In_The_Life’ ‘09_-_Magical_Mystery_Tour/04_-_Blue_Jay_Way’ ‘10CD1_-_The_Beatles/CD1_-_10_-_I’m_So_Tired’ ‘11_-_Abbey_Road/06_-_I_Want_You’ ‘12_-_Let_It_Be/04_-_I_Me_Mine’ CSV

1.2 compared with schreiber2018/fcn (3 differences): ‘08_-_Sgt._Pepper’s_Lonely_Hearts_Club_Band/03_-_Lucy_In_The_Sky_With_Diamonds’ ‘09_-_Magical_Mystery_Tour/04_-_Blue_Jay_Way’ ‘11_-_Abbey_Road/09_-_You_Never_Give_Me_Your_Money’ CSV

1.2 compared with schreiber2018/ismir2018 (5 differences): ‘08_-_Sgt._Pepper’s_Lonely_Hearts_Club_Band/03_-_Lucy_In_The_Sky_With_Diamonds’ ‘08_-_Sgt._Pepper’s_Lonely_Hearts_Club_Band/13_-_A_Day_In_The_Life’ ‘10CD2_-_The_Beatles/CD2_-_02_-_Yer_Blues’ ‘11_-_Abbey_Road/09_-_You_Never_Give_Me_Your_Money’ ‘12_-_Let_It_Be/04_-_I_Me_Mine’ CSV

None of the estimators estimated the following item ‘correctly’ using Accuracy2: ‘08_-_Sgt._Pepper’s_Lonely_Hearts_Club_Band/03_-_Lucy_In_The_Sky_With_Diamonds’ CSV

Significance of Differences

Estimator boeck2015/tempodetector2016_default boeck2019/multi_task boeck2019/multi_task_hjdb boeck2020/dar davies2009/mirex_qm_tempotracker percival2014/stem schreiber2014/default schreiber2017/ismir2017 schreiber2017/mirex2017 schreiber2018/cnn schreiber2018/fcn schreiber2018/ismir2018
boeck2015/tempodetector2016_default 1.0000 0.0169 0.3323 0.1153 0.0017 0.0005 0.0000 0.0290 0.0146 0.0107 0.0433 0.0872
boeck2019/multi_task 0.0169 1.0000 0.0391 0.5235 0.2800 0.3616 0.0000 1.0000 1.0000 0.7201 1.0000 0.8450
boeck2019/multi_task_hjdb 0.3323 0.0391 1.0000 0.6072 0.0275 0.0241 0.0000 0.2478 0.2153 0.0755 0.3075 0.4049
boeck2020/dar 0.1153 0.5235 0.6072 1.0000 0.0961 0.1433 0.0000 0.5966 0.5114 0.2295 0.6900 0.8318
davies2009/mirex_qm_tempotracker 0.0017 0.2800 0.0275 0.0961 1.0000 0.8877 0.0018 0.2153 0.3604 0.5758 0.2624 0.1539
percival2014/stem 0.0005 0.3616 0.0241 0.1433 0.8877 1.0000 0.0000 0.3075 0.4583 0.7552 0.3105 0.2682
schreiber2014/default 0.0000 0.0000 0.0000 0.0000 0.0018 0.0000 1.0000 0.0000 0.0000 0.0001 0.0000 0.0000
schreiber2017/ismir2017 0.0290 1.0000 0.2478 0.5966 0.2153 0.3075 0.0000 1.0000 1.0000 0.7552 1.0000 0.8601
schreiber2017/mirex2017 0.0146 1.0000 0.2153 0.5114 0.3604 0.4583 0.0000 1.0000 1.0000 0.8776 0.8714 0.7552
schreiber2018/cnn 0.0107 0.7201 0.0755 0.2295 0.5758 0.7552 0.0001 0.7552 0.8776 1.0000 0.5572 0.3593
schreiber2018/fcn 0.0433 1.0000 0.3075 0.6900 0.2624 0.3105 0.0000 1.0000 0.8714 0.5572 1.0000 1.0000
schreiber2018/ismir2018 0.0872 0.8450 0.4049 0.8318 0.1539 0.2682 0.0000 0.8601 0.7552 0.3593 1.0000 1.0000

Table 4: McNemar p-values, using reference annotations 1.2 as groundtruth with Accuracy1 [Gouyon2006]. H0: both estimators disagree with the groundtruth to the same amount. If p<=ɑ, reject H0, i.e. we have a significant difference in the disagreement with the groundtruth. In the table, p-values<0.05 are set in bold.

CSV JSON LATEX PICKLE

Estimator boeck2015/tempodetector2016_default boeck2019/multi_task boeck2019/multi_task_hjdb boeck2020/dar davies2009/mirex_qm_tempotracker percival2014/stem schreiber2014/default schreiber2017/ismir2017 schreiber2017/mirex2017 schreiber2018/cnn schreiber2018/fcn schreiber2018/ismir2018
boeck2015/tempodetector2016_default 1.0000 0.2500 0.2500 0.0156 0.1250 1.0000 0.0000 1.0000 0.2500 0.0625 0.5000 0.1250
boeck2019/multi_task 0.2500 1.0000 1.0000 0.2891 1.0000 0.2500 0.0010 0.6250 1.0000 0.6250 1.0000 1.0000
boeck2019/multi_task_hjdb 0.2500 1.0000 1.0000 0.2891 1.0000 0.2500 0.0010 0.6250 1.0000 0.6250 1.0000 1.0000
boeck2020/dar 0.0156 0.2891 0.2891 1.0000 0.5488 0.0156 0.0352 0.0703 0.3437 0.7539 0.1250 0.5078
davies2009/mirex_qm_tempotracker 0.1250 1.0000 1.0000 0.5488 1.0000 0.1250 0.0042 0.2500 1.0000 1.0000 0.6250 1.0000
percival2014/stem 1.0000 0.2500 0.2500 0.0156 0.1250 1.0000 0.0000 1.0000 0.2500 0.0625 0.5000 0.1250
schreiber2014/default 0.0000 0.0010 0.0010 0.0352 0.0042 0.0000 1.0000 0.0001 0.0010 0.0010 0.0001 0.0018
schreiber2017/ismir2017 1.0000 0.6250 0.6250 0.0703 0.2500 1.0000 0.0001 1.0000 0.5000 0.2188 1.0000 0.3750
schreiber2017/mirex2017 0.2500 1.0000 1.0000 0.3437 1.0000 0.2500 0.0010 0.5000 1.0000 0.6875 1.0000 1.0000
schreiber2018/cnn 0.0625 0.6250 0.6250 0.7539 1.0000 0.0625 0.0010 0.2188 0.6875 1.0000 0.3750 1.0000
schreiber2018/fcn 0.5000 1.0000 1.0000 0.1250 0.6250 0.5000 0.0001 1.0000 1.0000 0.3750 1.0000 0.6250
schreiber2018/ismir2018 0.1250 1.0000 1.0000 0.5078 1.0000 0.1250 0.0018 0.3750 1.0000 1.0000 0.6250 1.0000

Table 5: McNemar p-values, using reference annotations 1.2 as groundtruth with Accuracy2 [Gouyon2006]. H0: both estimators disagree with the groundtruth to the same amount. If p<=ɑ, reject H0, i.e. we have a significant difference in the disagreement with the groundtruth. In the table, p-values<0.05 are set in bold.

CSV JSON LATEX PICKLE

Accuracy1 on cvar-Subsets

How well does an estimator perform, when only taking tracks into account that have a cvar-value of less than τ, i.e., have a more or less stable beat?

Accuracy1 on cvar-Subsets for 1.2 based on cvar-Values from 1.2

Figure 6: Mean Accuracy1 compared to version 1.2 for tracks with cvar < τ based on beat annotations from 1.2.

CSV JSON LATEX PICKLE SVG PDF PNG

Accuracy2 on cvar-Subsets

How well does an estimator perform, when only taking tracks into account that have a cvar-value of less than τ, i.e., have a more or less stable beat?

Accuracy2 on cvar-Subsets for 1.2 based on cvar-Values from 1.2

Figure 7: Mean Accuracy2 compared to version 1.2 for tracks with cvar < τ based on beat annotations from 1.2.

CSV JSON LATEX PICKLE SVG PDF PNG

Accuracy1 on Tempo-Subsets

How well does an estimator perform, when only taking a subset of the reference annotations into account? The graphs show mean Accuracy1 for reference subsets with tempi in [T-10,T+10] BPM. Note that the graphs do not show confidence intervals and that some values may be based on very few estimates.

Accuracy1 on Tempo-Subsets for 1.2

Figure 8: Mean Accuracy1 for estimates compared to version 1.2 for tempo intervals around T.

CSV JSON LATEX PICKLE SVG PDF PNG

Accuracy2 on Tempo-Subsets

How well does an estimator perform, when only taking a subset of the reference annotations into account? The graphs show mean Accuracy2 for reference subsets with tempi in [T-10,T+10] BPM. Note that the graphs do not show confidence intervals and that some values may be based on very few estimates.

Accuracy2 on Tempo-Subsets for 1.2

Figure 9: Mean Accuracy2 for estimates compared to version 1.2 for tempo intervals around T.

CSV JSON LATEX PICKLE SVG PDF PNG

Estimated Accuracy1 for Tempo

When fitting a generalized additive model (GAM) to Accuracy1-values and a ground truth, what Accuracy1 can we expect with confidence?

Estimated Accuracy1 for Tempo for 1.2

Predictions of GAMs trained on Accuracy1 for estimates for reference 1.2.

Figure 10: Accuracy1 predictions of a generalized additive model (GAM) fit to Accuracy1 results for 1.2. The 95% confidence interval around the prediction is shaded in gray.

CSV JSON LATEX PICKLE SVG PDF PNG

Estimated Accuracy2 for Tempo

When fitting a generalized additive model (GAM) to Accuracy2-values and a ground truth, what Accuracy2 can we expect with confidence?

Estimated Accuracy2 for Tempo for 1.2

Predictions of GAMs trained on Accuracy2 for estimates for reference 1.2.

Figure 11: Accuracy2 predictions of a generalized additive model (GAM) fit to Accuracy2 results for 1.2. The 95% confidence interval around the prediction is shaded in gray.

CSV JSON LATEX PICKLE SVG PDF PNG

OE1 and OE2

OE1 is defined as octave error between an estimate E and a reference value R.This means that the most common errors—by a factor of 2 or ½—have the same magnitude, namely 1: OE2(E) = log2(E/R).

OE2 is the signed OE1 corresponding to the minimum absolute OE1 allowing the octaveerrors 2, 3, 1/2, and 1/3: OE2(E) = arg minx(|x|) with x ∈ {OE1(E), OE1(2E), OE1(3E), OE1(½E), OE1(⅓E)}

Mean OE1/OE2 Results for 1.2

Estimator OE1_MEAN OE1_STDEV OE2_MEAN OE2_STDEV
boeck2015/tempodetector2016_default -0.0381 0.2938 -0.0013 0.0353
boeck2019/multi_task_hjdb -0.0077 0.3235 -0.0045 0.0502
boeck2020/dar -0.0018 0.3261 -0.0064 0.0424
schreiber2018/ismir2018 0.0360 0.3372 -0.0087 0.0599
schreiber2018/fcn -0.0221 0.3587 -0.0053 0.0376
schreiber2017/mirex2017 -0.0726 0.3675 -0.0000 0.0643
schreiber2018/cnn 0.0467 0.3788 -0.0059 0.0522
boeck2019/multi_task -0.0327 0.3887 -0.0048 0.0506
percival2014/stem -0.1612 0.4016 -0.0015 0.0342
davies2009/mirex_qm_tempotracker 0.1310 0.4028 0.0192 0.0567
schreiber2017/ismir2017 -0.0591 0.4048 -0.0046 0.0449
schreiber2014/default -0.2663 0.4512 -0.0060 0.0789

Table 6: Mean OE1/OE2 for estimates compared to version 1.2 ordered by standard deviation.

CSV JSON LATEX PICKLE

Raw data OE1: CSV JSON LATEX PICKLE

Raw data OE2: CSV JSON LATEX PICKLE

OE1 distribution for 1.2

Figure 12: OE1 for estimates compared to version 1.2. Shown are the mean OE1 and an empirical distribution of the sample, using kernel density estimation (KDE).

CSV JSON LATEX PICKLE SVG PDF PNG

OE2 distribution for 1.2

Figure 13: OE2 for estimates compared to version 1.2. Shown are the mean OE2 and an empirical distribution of the sample, using kernel density estimation (KDE).

CSV JSON LATEX PICKLE SVG PDF PNG

Significance of Differences

Estimator boeck2015/tempodetector2016_default boeck2019/multi_task boeck2019/multi_task_hjdb boeck2020/dar davies2009/mirex_qm_tempotracker percival2014/stem schreiber2014/default schreiber2017/ismir2017 schreiber2017/mirex2017 schreiber2018/cnn schreiber2018/fcn schreiber2018/ismir2018
boeck2015/tempodetector2016_default 1.0000 0.8472 0.2037 0.1328 0.0000 0.0000 0.0000 0.4735 0.2154 0.0050 0.5662 0.0093
boeck2019/multi_task 0.8472 1.0000 0.1687 0.2067 0.0000 0.0000 0.0000 0.3611 0.2077 0.0108 0.7245 0.0141
boeck2019/multi_task_hjdb 0.2037 0.1687 1.0000 0.7454 0.0000 0.0000 0.0000 0.0895 0.0381 0.0509 0.6188 0.0792
boeck2020/dar 0.1328 0.2067 0.7454 1.0000 0.0003 0.0000 0.0000 0.0754 0.0281 0.0404 0.4549 0.1192
davies2009/mirex_qm_tempotracker 0.0000 0.0000 0.0000 0.0003 1.0000 0.0000 0.0000 0.0000 0.0000 0.0357 0.0001 0.0057
percival2014/stem 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0009 0.0002 0.0033 0.0000 0.0000 0.0000
schreiber2014/default 0.0000 0.0000 0.0000 0.0000 0.0000 0.0009 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000
schreiber2017/ismir2017 0.4735 0.3611 0.0895 0.0754 0.0000 0.0002 0.0000 1.0000 0.6121 0.0039 0.3002 0.0032
schreiber2017/mirex2017 0.2154 0.2077 0.0381 0.0281 0.0000 0.0033 0.0000 0.6121 1.0000 0.0006 0.1210 0.0014
schreiber2018/cnn 0.0050 0.0108 0.0509 0.0404 0.0357 0.0000 0.0000 0.0039 0.0006 1.0000 0.0125 0.6438
schreiber2018/fcn 0.5662 0.7245 0.6188 0.4549 0.0001 0.0000 0.0000 0.3002 0.1210 0.0125 1.0000 0.0439
schreiber2018/ismir2018 0.0093 0.0141 0.0792 0.1192 0.0057 0.0000 0.0000 0.0032 0.0014 0.6438 0.0439 1.0000

Table 7: Paired t-test p-values, using reference annotations 1.2 as groundtruth with OE1. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.

CSV JSON LATEX PICKLE

Estimator boeck2015/tempodetector2016_default boeck2019/multi_task boeck2019/multi_task_hjdb boeck2020/dar davies2009/mirex_qm_tempotracker percival2014/stem schreiber2014/default schreiber2017/ismir2017 schreiber2017/mirex2017 schreiber2018/cnn schreiber2018/fcn schreiber2018/ismir2018
boeck2015/tempodetector2016_default 1.0000 0.2514 0.2982 0.0293 0.0000 0.8430 0.5248 0.1913 0.7584 0.1737 0.0348 0.0744
boeck2019/multi_task 0.2514 1.0000 0.3126 0.5892 0.0000 0.2601 0.8685 0.9717 0.3319 0.7714 0.8738 0.4541
boeck2019/multi_task_hjdb 0.2982 0.3126 1.0000 0.5233 0.0000 0.3090 0.8348 0.9638 0.3641 0.7207 0.8034 0.4277
boeck2020/dar 0.0293 0.5892 0.5233 1.0000 0.0000 0.0261 0.9545 0.5979 0.1670 0.8972 0.6578 0.6242
davies2009/mirex_qm_tempotracker 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0009 0.0000 0.0000 0.0000 0.0000 0.0000
percival2014/stem 0.8430 0.2601 0.3090 0.0261 0.0000 1.0000 0.5338 0.1919 0.7233 0.1880 0.0379 0.0800
schreiber2014/default 0.5248 0.8685 0.8348 0.9545 0.0009 0.5338 1.0000 0.8442 0.3961 0.9939 0.9221 0.7627
schreiber2017/ismir2017 0.1913 0.9717 0.9638 0.5979 0.0000 0.1919 0.8442 1.0000 0.1579 0.7601 0.8222 0.3918
schreiber2017/mirex2017 0.7584 0.3319 0.3641 0.1670 0.0000 0.7233 0.3961 0.1579 1.0000 0.3599 0.2480 0.2011
schreiber2018/cnn 0.1737 0.7714 0.7207 0.8972 0.0000 0.1880 0.9939 0.7601 0.3599 1.0000 0.8655 0.4252
schreiber2018/fcn 0.0348 0.8738 0.8034 0.6578 0.0000 0.0379 0.9221 0.8222 0.2480 0.8655 1.0000 0.4055
schreiber2018/ismir2018 0.0744 0.4541 0.4277 0.6242 0.0000 0.0800 0.7627 0.3918 0.2011 0.4252 0.4055 1.0000

Table 8: Paired t-test p-values, using reference annotations 1.2 as groundtruth with OE2. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.

CSV JSON LATEX PICKLE

OE1 on cvar-Subsets

How well does an estimator perform, when only taking tracks into account that have a cvar-value of less than τ, i.e., have a more or less stable beat?

OE1 on cvar-Subsets for 1.2 based on cvar-Values from 1.2

Figure 14: Mean OE1 compared to version 1.2 for tracks with cvar < τ based on beat annotations from 1.2.

CSV JSON LATEX PICKLE SVG PDF PNG

OE2 on cvar-Subsets

How well does an estimator perform, when only taking tracks into account that have a cvar-value of less than τ, i.e., have a more or less stable beat?

OE2 on cvar-Subsets for 1.2 based on cvar-Values from 1.2

Figure 15: Mean OE2 compared to version 1.2 for tracks with cvar < τ based on beat annotations from 1.2.

CSV JSON LATEX PICKLE SVG PDF PNG

OE1 on Tempo-Subsets

How well does an estimator perform, when only taking a subset of the reference annotations into account? The graphs show mean OE1 for reference subsets with tempi in [T-10,T+10] BPM. Note that the graphs do not show confidence intervals and that some values may be based on very few estimates.

OE1 on Tempo-Subsets for 1.2

Figure 16: Mean OE1 for estimates compared to version 1.2 for tempo intervals around T.

CSV JSON LATEX PICKLE SVG PDF PNG

OE2 on Tempo-Subsets

How well does an estimator perform, when only taking a subset of the reference annotations into account? The graphs show mean OE2 for reference subsets with tempi in [T-10,T+10] BPM. Note that the graphs do not show confidence intervals and that some values may be based on very few estimates.

OE2 on Tempo-Subsets for 1.2

Figure 17: Mean OE2 for estimates compared to version 1.2 for tempo intervals around T.

CSV JSON LATEX PICKLE SVG PDF PNG

Estimated OE1 for Tempo

When fitting a generalized additive model (GAM) to OE1-values and a ground truth, what OE1 can we expect with confidence?

Estimated OE1 for Tempo for 1.2

Predictions of GAMs trained on OE1 for estimates for reference 1.2.

Figure 18: OE1 predictions of a generalized additive model (GAM) fit to OE1 results for 1.2. The 95% confidence interval around the prediction is shaded in gray.

CSV JSON LATEX PICKLE SVG PDF PNG

Estimated OE2 for Tempo

When fitting a generalized additive model (GAM) to OE2-values and a ground truth, what OE2 can we expect with confidence?

Estimated OE2 for Tempo for 1.2

Predictions of GAMs trained on OE2 for estimates for reference 1.2.

Figure 19: OE2 predictions of a generalized additive model (GAM) fit to OE2 results for 1.2. The 95% confidence interval around the prediction is shaded in gray.

CSV JSON LATEX PICKLE SVG PDF PNG

AOE1 and AOE2

AOE1 is defined as absolute octave error between an estimate and a reference value: AOE1(E) = |log2(E/R)|.

AOE2 is the minimum of AOE1 allowing the octave errors 2, 3, 1/2, and 1/3: AOE2(E) = min(AOE1(E), AOE1(2E), AOE1(3E), AOE1(½E), AOE1(⅓E)).

Mean AOE1/AOE2 Results for 1.2

Estimator AOE1_MEAN AOE1_STDEV AOE2_MEAN AOE2_STDEV
boeck2015/tempodetector2016_default 0.0913 0.2819 0.0106 0.0337
boeck2019/multi_task_hjdb 0.1094 0.3045 0.0121 0.0489
boeck2020/dar 0.1118 0.3063 0.0178 0.0390
schreiber2018/ismir2018 0.1283 0.3139 0.0177 0.0579
schreiber2018/fcn 0.1412 0.3305 0.0143 0.0351
boeck2019/multi_task 0.1512 0.3596 0.0118 0.0494
schreiber2017/mirex2017 0.1530 0.3419 0.0175 0.0618
schreiber2018/cnn 0.1538 0.3493 0.0173 0.0496
schreiber2017/ismir2017 0.1618 0.3757 0.0129 0.0433
percival2014/stem 0.1871 0.3902 0.0069 0.0335
davies2009/mirex_qm_tempotracker 0.1964 0.3753 0.0282 0.0528
schreiber2014/default 0.2926 0.4346 0.0342 0.0713

Table 9: Mean AOE1/AOE2 for estimates compared to version 1.2 ordered by mean.

CSV JSON LATEX PICKLE

Raw data AOE1: CSV JSON LATEX PICKLE

Raw data AOE2: CSV JSON LATEX PICKLE

AOE1 distribution for 1.2

Figure 20: AOE1 for estimates compared to version 1.2. Shown are the mean AOE1 and an empirical distribution of the sample, using kernel density estimation (KDE).

CSV JSON LATEX PICKLE SVG PDF PNG

AOE2 distribution for 1.2

Figure 21: AOE2 for estimates compared to version 1.2. Shown are the mean AOE2 and an empirical distribution of the sample, using kernel density estimation (KDE).

CSV JSON LATEX PICKLE SVG PDF PNG

Significance of Differences

Estimator boeck2015/tempodetector2016_default boeck2019/multi_task boeck2019/multi_task_hjdb boeck2020/dar davies2009/mirex_qm_tempotracker percival2014/stem schreiber2014/default schreiber2017/ismir2017 schreiber2017/mirex2017 schreiber2018/cnn schreiber2018/fcn schreiber2018/ismir2018
boeck2015/tempodetector2016_default 1.0000 0.0294 0.4458 0.3911 0.0014 0.0009 0.0000 0.0140 0.0241 0.0373 0.0687 0.1897
boeck2019/multi_task 0.0294 1.0000 0.0192 0.1052 0.2068 0.2487 0.0001 0.7128 0.9544 0.9338 0.7285 0.4132
boeck2019/multi_task_hjdb 0.4458 0.0192 1.0000 0.8973 0.0105 0.0087 0.0000 0.0805 0.1612 0.1101 0.2424 0.4422
boeck2020/dar 0.3911 0.1052 0.8973 1.0000 0.0174 0.0186 0.0000 0.1160 0.1981 0.0734 0.2723 0.4881
davies2009/mirex_qm_tempotracker 0.0014 0.2068 0.0105 0.0174 1.0000 0.8135 0.0319 0.2751 0.2210 0.2812 0.1598 0.0433
percival2014/stem 0.0009 0.2487 0.0087 0.0186 0.8135 1.0000 0.0005 0.3540 0.2601 0.3548 0.1693 0.0916
schreiber2014/default 0.0000 0.0001 0.0000 0.0000 0.0319 0.0005 1.0000 0.0002 0.0000 0.0011 0.0001 0.0000
schreiber2017/ismir2017 0.0140 0.7128 0.0805 0.1160 0.2751 0.3540 0.0002 1.0000 0.7402 0.8284 0.5636 0.3012
schreiber2017/mirex2017 0.0241 0.9544 0.1612 0.1981 0.2210 0.2601 0.0000 0.7402 1.0000 0.9820 0.7169 0.4715
schreiber2018/cnn 0.0373 0.9338 0.1101 0.0734 0.2812 0.3548 0.0011 0.8284 0.9820 1.0000 0.6469 0.2615
schreiber2018/fcn 0.0687 0.7285 0.2424 0.2723 0.1598 0.1693 0.0001 0.5636 0.7169 0.6469 1.0000 0.6504
schreiber2018/ismir2018 0.1897 0.4132 0.4422 0.4881 0.0433 0.0916 0.0000 0.3012 0.4715 0.2615 0.6504 1.0000

Table 10: Paired t-test p-values, using reference annotations 1.2 as groundtruth with AOE1. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.

CSV JSON LATEX PICKLE

Estimator boeck2015/tempodetector2016_default boeck2019/multi_task boeck2019/multi_task_hjdb boeck2020/dar davies2009/mirex_qm_tempotracker percival2014/stem schreiber2014/default schreiber2017/ismir2017 schreiber2017/mirex2017 schreiber2018/cnn schreiber2018/fcn schreiber2018/ismir2018
boeck2015/tempodetector2016_default 1.0000 0.6501 0.5832 0.0001 0.0000 0.0000 0.0000 0.3280 0.0873 0.0211 0.0095 0.0505
boeck2019/multi_task 0.6501 1.0000 0.3158 0.0200 0.0003 0.0678 0.0000 0.7653 0.2230 0.1012 0.4124 0.1825
boeck2019/multi_task_hjdb 0.5832 0.3158 1.0000 0.0291 0.0004 0.0552 0.0000 0.8286 0.2429 0.1154 0.4702 0.1951
boeck2020/dar 0.0001 0.0200 0.0291 1.0000 0.0069 0.0000 0.0004 0.0742 0.9439 0.8427 0.0646 0.9704
davies2009/mirex_qm_tempotracker 0.0000 0.0003 0.0004 0.0069 1.0000 0.0000 0.2353 0.0000 0.0143 0.0169 0.0001 0.0416
percival2014/stem 0.0000 0.0678 0.0552 0.0000 0.0000 1.0000 0.0000 0.0095 0.0080 0.0002 0.0000 0.0027
schreiber2014/default 0.0000 0.0000 0.0000 0.0004 0.2353 0.0000 1.0000 0.0000 0.0003 0.0000 0.0000 0.0015
schreiber2017/ismir2017 0.3280 0.7653 0.8286 0.0742 0.0000 0.0095 0.0000 1.0000 0.1579 0.2111 0.5790 0.2610
schreiber2017/mirex2017 0.0873 0.2230 0.2429 0.9439 0.0143 0.0080 0.0003 0.1579 1.0000 0.9449 0.4439 0.9699
schreiber2018/cnn 0.0211 0.1012 0.1154 0.8427 0.0169 0.0002 0.0000 0.2111 0.9449 1.0000 0.3098 0.8969
schreiber2018/fcn 0.0095 0.4124 0.4702 0.0646 0.0001 0.0000 0.0000 0.5790 0.4439 0.3098 1.0000 0.3783
schreiber2018/ismir2018 0.0505 0.1825 0.1951 0.9704 0.0416 0.0027 0.0015 0.2610 0.9699 0.8969 0.3783 1.0000

Table 11: Paired t-test p-values, using reference annotations 1.2 as groundtruth with AOE2. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.

CSV JSON LATEX PICKLE

AOE1 on cvar-Subsets

How well does an estimator perform, when only taking tracks into account that have a cvar-value of less than τ, i.e., have a more or less stable beat?

AOE1 on cvar-Subsets for 1.2 based on cvar-Values from 1.2

Figure 22: Mean AOE1 compared to version 1.2 for tracks with cvar < τ based on beat annotations from 1.2.

CSV JSON LATEX PICKLE SVG PDF PNG

AOE2 on cvar-Subsets

How well does an estimator perform, when only taking tracks into account that have a cvar-value of less than τ, i.e., have a more or less stable beat?

AOE2 on cvar-Subsets for 1.2 based on cvar-Values from 1.2

Figure 23: Mean AOE2 compared to version 1.2 for tracks with cvar < τ based on beat annotations from 1.2.

CSV JSON LATEX PICKLE SVG PDF PNG

AOE1 on Tempo-Subsets

How well does an estimator perform, when only taking a subset of the reference annotations into account? The graphs show mean AOE1 for reference subsets with tempi in [T-10,T+10] BPM. Note that the graphs do not show confidence intervals and that some values may be based on very few estimates.

AOE1 on Tempo-Subsets for 1.2

Figure 24: Mean AOE1 for estimates compared to version 1.2 for tempo intervals around T.

CSV JSON LATEX PICKLE SVG PDF PNG

AOE2 on Tempo-Subsets

How well does an estimator perform, when only taking a subset of the reference annotations into account? The graphs show mean AOE2 for reference subsets with tempi in [T-10,T+10] BPM. Note that the graphs do not show confidence intervals and that some values may be based on very few estimates.

AOE2 on Tempo-Subsets for 1.2

Figure 25: Mean AOE2 for estimates compared to version 1.2 for tempo intervals around T.

CSV JSON LATEX PICKLE SVG PDF PNG

Estimated AOE1 for Tempo

When fitting a generalized additive model (GAM) to AOE1-values and a ground truth, what AOE1 can we expect with confidence?

Estimated AOE1 for Tempo for 1.2

Predictions of GAMs trained on AOE1 for estimates for reference 1.2.

Figure 26: AOE1 predictions of a generalized additive model (GAM) fit to AOE1 results for 1.2. The 95% confidence interval around the prediction is shaded in gray.

CSV JSON LATEX PICKLE SVG PDF PNG

Estimated AOE2 for Tempo

When fitting a generalized additive model (GAM) to AOE2-values and a ground truth, what AOE2 can we expect with confidence?

Estimated AOE2 for Tempo for 1.2

Predictions of GAMs trained on AOE2 for estimates for reference 1.2.

Figure 27: AOE2 predictions of a generalized additive model (GAM) fit to AOE2 results for 1.2. The 95% confidence interval around the prediction is shaded in gray.

CSV JSON LATEX PICKLE SVG PDF PNG


Generated by tempo_eval 0.1.1 on 2022-06-29 18:16. Size L.