acm_mirum
This is the tempo_eval report for the ‘acm_mirum’ corpus.
Reports for other corpora may be found here.
Table of Contents
- References for ‘acm_mirum’
- Estimates for ‘acm_mirum’
- Estimators
- boeck2015/tempodetector2016_default
- boeck2019/multi_task
- boeck2019/multi_task_hjdb
- boeck2020/dar
- davies2009/mirex_qm_tempotracker
- echonest/version_3_2_1
- gkiokas2012/default
- klapuri2006/percival2014
- oliveira2010/ibt
- percival2014/stem
- scheirer1998/percival2014
- schreiber2014/default
- schreiber2017/ismir2017
- schreiber2017/mirex2017
- schreiber2018/cnn
- schreiber2018/fcn
- schreiber2018/ismir2018
- sun2021/default
- zplane/auftakt_v3
- Basic Statistics
- Smoothed Tempo Distribution
- Accuracy
- OE1 and OE2
- AOE1 and AOE2
- Estimators
References for ‘acm_mirum’
References
1.0
Attribute | Value |
---|---|
Corpus | acm_mirum |
Version | 1.0 |
Curator | Geoffroy Peeters |
Annotator, bibtex | Peeters2012 |
Annotator, ref_url | http://recherche.ircam.fr/anasyn/peeters/pub/2012_ACMMIRUM/ |
2.0
Attribute | Value |
---|---|
Corpus | acm_mirum |
Version | 2.0 |
Curator | Graham Percival |
Annotator, bibtex | Percival2014 |
Annotator, ref_url | http://www.marsyas.info/tempo/ |
Basic Statistics
Reference | Size | Min | Max | Avg | Stdev | Sweet Oct. Start | Sweet Oct. Coverage |
---|---|---|---|---|---|---|---|
1.0 | 1410 | 36.00 | 257.00 | 102.54 | 32.73 | 69.00 | 0.73 |
2.0 | 1410 | 37.00 | 257.00 | 102.72 | 32.59 | 69.00 | 0.73 |
Smoothed Tempo Distribution
Figure 1: Percentage of values in tempo interval.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimates for ‘acm_mirum’
Estimators
boeck2015/tempodetector2016_default
Attribute | Value |
---|---|
Corpus | acm_mirum |
Version | 0.17.dev0 |
Annotation Tools | TempoDetector.2016, madmom, https://github.com/CPJKU/madmom |
Annotator, bibtex | Boeck2015 |
boeck2019/multi_task
Attribute | Value |
---|---|
Corpus | acm_mirum |
Version | 0.0.1 |
Annotation Tools | model=multi_task, https://github.com/superbock/ISMIR2019 |
Annotator, bibtex | Boeck2019 |
boeck2019/multi_task_hjdb
Attribute | Value |
---|---|
Corpus | acm_mirum |
Version | 0.0.1 |
Annotation Tools | model=multi_task_hjdb, https://github.com/superbock/ISMIR2019 |
Annotator, bibtex | Boeck2019 |
boeck2020/dar
Attribute | Value |
---|---|
Corpus | acm_mirum |
Version | 0.0.1 |
Annotation Tools | https://github.com/superbock/ISMIR2020 |
Annotator, bibtex | Boeck2020 |
davies2009/mirex_qm_tempotracker
Attribute | Value | |
---|---|---|
Corpus | acm_mirum | |
Version | 1.0 | |
Annotation Tools | QM Tempotracker, Sonic Annotator plugin. https://code.soundsoftware.ac.uk/projects/mirex2013/repository/show/audio_tempo_estimation/qm-tempotracker Note that the current macOS build of ‘qm-vamp-plugins’ was used. | |
Annotator, bibtex | Davies2009 | Davies2007 |
echonest/version_3_2_1
Attribute | Value |
---|---|
Corpus | acm_mirum |
Version | 3.2.1 |
Data Source | Graham Percival and George Tzanetakis. Streamlined tempo estimation based on autocorrelation and crosscorrelation with pulses. IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP), 22(12):1765–1776, 2014. |
Annotation Tools | Echo Nest track analyzer v3.2.1 |
Annotator, bibtex | Percival2014 |
gkiokas2012/default
Attribute | Value |
---|---|
Corpus | acm_mirum |
Version | 1.0 |
Data Source | Graham Percival and George Tzanetakis. Streamlined tempo estimation based on autocorrelation and crosscorrelation with pulses. IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP), 22(12):1765–1776, 2014. |
Annotation Tools | Gkiokas2012 |
Annotator, bibtex | Gkiokas2012 |
klapuri2006/percival2014
Attribute | Value |
---|---|
Corpus | acm_mirum |
Version | 1.0 |
Data Source | Graham Percival and George Tzanetakis. Streamlined tempo estimation based on autocorrelation and crosscorrelation with pulses. IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP), 22(12):1765–1776, 2014. |
Annotation Tools | Klapuri 2006 |
Annotator, bibtex | Klapuri2006 |
oliveira2010/ibt
Attribute | Value |
---|---|
Corpus | acm_mirum |
Version | 1.0 |
Data Source | Graham Percival and George Tzanetakis. Streamlined tempo estimation based on autocorrelation and crosscorrelation with pulses. IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP), 22(12):1765–1776, 2014. |
Annotation Tools | Oliveira 2010 |
Annotator, bibtex | Oliveira2010 |
percival2014/stem
Attribute | Value |
---|---|
Corpus | acm_mirum |
Version | 1.0 |
Annotation Tools | percival 2014, ‘tempo’ implementation from Marsyas, http://marsyas.info, git checkout tempo-stem |
Annotator, bibtex | Percival2014 |
scheirer1998/percival2014
Attribute | Value |
---|---|
Corpus | acm_mirum |
Version | 1.0 |
Data Source | Graham Percival and George Tzanetakis. Streamlined tempo estimation based on autocorrelation and crosscorrelation with pulses. IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP), 22(12):1765–1776, 2014. |
Annotation Tools | Scheirer 1998 |
Annotator, bibtex | Scheirer1998 |
schreiber2014/default
Attribute | Value |
---|---|
Corpus | acm_mirum |
Version | 0.0.1 |
Annotation Tools | schreiber 2014, http://www.tagtraum.com/tempo_estimation.html |
Annotator, bibtex | Schreiber2014 |
schreiber2017/ismir2017
Attribute | Value |
---|---|
Corpus | acm_mirum |
Version | 0.0.4 |
Annotation Tools | schreiber 2017, model=ismir2017, http://www.tagtraum.com/tempo_estimation.html |
Annotator, bibtex | Schreiber2017 |
schreiber2017/mirex2017
Attribute | Value |
---|---|
Corpus | acm_mirum |
Version | 0.0.4 |
Annotation Tools | schreiber 2017, model=mirex2017, http://www.tagtraum.com/tempo_estimation.html |
Annotator, bibtex | Schreiber2017 |
schreiber2018/cnn
Attribute | Value |
---|---|
Corpus | acm_mirum |
Version | 0.0.2 |
Data Source | Hendrik Schreiber, Meinard Müller. A Single-Step Approach to Musical Tempo Estimation Using a Convolutional Neural Network. In Proceedings of the 19th International Society for Music Information Retrieval Conference (ISMIR), Paris, France, Sept. 2018. |
Annotation Tools | schreiber tempo-cnn (model=cnn), https://github.com/hendriks73/tempo-cnn |
schreiber2018/fcn
Attribute | Value |
---|---|
Corpus | acm_mirum |
Version | 0.0.2 |
Data Source | Hendrik Schreiber, Meinard Müller. A Single-Step Approach to Musical Tempo Estimation Using a Convolutional Neural Network. In Proceedings of the 19th International Society for Music Information Retrieval Conference (ISMIR), Paris, France, Sept. 2018. |
Annotation Tools | schreiber tempo-cnn (model=fcn), https://github.com/hendriks73/tempo-cnn |
schreiber2018/ismir2018
Attribute | Value |
---|---|
Corpus | acm_mirum |
Version | 0.0.2 |
Data Source | Hendrik Schreiber, Meinard Müller. A Single-Step Approach to Musical Tempo Estimation Using a Convolutional Neural Network. In Proceedings of the 19th International Society for Music Information Retrieval Conference (ISMIR), Paris, France, Sept. 2018. |
Annotation Tools | schreiber tempo-cnn (model=ismir2018), https://github.com/hendriks73/tempo-cnn |
sun2021/default
Attribute | Value |
---|---|
Corpus | acm_mirum |
Version | 0.0.2 |
Data Source | Xiaoheng Sun, Qiqi He, Yongwei Gao, Wei Li. Musical Tempo Estimation Using a Multi-scale Network. in Proc. of the 22nd Int. Society for Music Information Retrieval Conf., Online, 2021 |
Annotation Tools | https://github.com/Qqi-HE/TempoEstimation_MGANet |
Annotator, bibtex | Sun2021 |
zplane/auftakt_v3
Attribute | Value |
---|---|
Corpus | acm_mirum |
Version | 3.0 |
Data Source | Graham Percival and George Tzanetakis. Streamlined tempo estimation based on autocorrelation and crosscorrelation with pulses. IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP), 22(12):1765–1776, 2014. |
Annotation Tools | zplane aufTAKT version 3.0, http://licensing.zplane.de/technology#auftakt |
Annotator, bibtex | Percival2014 |
Basic Statistics
Estimator | Size | Min | Max | Avg | Stdev | Sweet Oct. Start | Sweet Oct. Coverage |
---|---|---|---|---|---|---|---|
boeck2015/tempodetector2016_default | 1410 | 41.96 | 240.00 | 118.09 | 34.59 | 84.00 | 0.72 |
boeck2019/multi_task | 1410 | 39.89 | 206.08 | 107.56 | 28.79 | 72.00 | 0.82 |
boeck2019/multi_task_hjdb | 1410 | 39.64 | 204.80 | 108.48 | 29.73 | 72.00 | 0.79 |
boeck2020/dar | 1410 | 48.02 | 237.16 | 109.24 | 32.30 | 73.00 | 0.76 |
davies2009/mirex_qm_tempotracker | 1410 | 60.80 | 191.41 | 120.01 | 27.50 | 84.00 | 0.87 |
echonest/version_3_2_1 | 1410 | 45.91 | 197.99 | 108.64 | 30.82 | 72.00 | 0.76 |
gkiokas2012/default | 1410 | 44.00 | 218.00 | 107.42 | 30.72 | 73.00 | 0.77 |
klapuri2006/percival2014 | 1410 | 65.01 | 164.06 | 110.33 | 23.89 | 76.00 | 0.93 |
oliveira2010/ibt | 1410 | 80.00 | 167.00 | 118.42 | 23.87 | 81.00 | 1.00 |
percival2014/stem | 1410 | 50.67 | 156.60 | 102.13 | 22.97 | 72.00 | 0.92 |
scheirer1998/percival2014 | 1312 | 61.35 | 181.82 | 106.51 | 31.06 | 77.00 | 0.72 |
schreiber2014/default | 1410 | 56.34 | 160.08 | 99.91 | 22.74 | 68.00 | 0.90 |
schreiber2017/ismir2017 | 1410 | 40.72 | 203.92 | 105.72 | 27.80 | 72.00 | 0.83 |
schreiber2017/mirex2017 | 1410 | 28.86 | 193.36 | 104.59 | 29.61 | 72.00 | 0.79 |
schreiber2018/cnn | 1410 | 41.00 | 204.00 | 111.56 | 31.17 | 74.00 | 0.77 |
schreiber2018/fcn | 1410 | 40.00 | 214.00 | 109.67 | 33.17 | 72.00 | 0.75 |
schreiber2018/ismir2018 | 1410 | 56.00 | 204.00 | 110.56 | 28.18 | 74.00 | 0.85 |
sun2021/default | 1410 | 47.00 | 240.00 | 110.64 | 32.64 | 73.00 | 0.75 |
zplane/auftakt_v3 | 1410 | 65.00 | 171.00 | 108.30 | 25.58 | 79.00 | 0.85 |
Smoothed Tempo Distribution
Figure 2: Percentage of values in tempo interval.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy
Accuracy1 is defined as the percentage of correct estimates, allowing a 4% tolerance for individual BPM values.
Accuracy2 additionally permits estimates to be wrong by a factor of 2, 3, 1/2 or 1/3 (so-called octave errors).
See [Gouyon2006].
Note: When comparing accuracy values for different algorithms, keep in mind that an algorithm may have been trained on the test set or that the test set may have even been created using one of the tested algorithms.
Accuracy Results for 1.0
Estimator | Accuracy1 | Accuracy2 |
---|---|---|
schreiber2017/mirex2017 | 0.8348 | 0.9078 |
boeck2020/dar | 0.7844 | 0.9085 |
schreiber2018/cnn | 0.7645 | 0.9071 |
schreiber2018/fcn | 0.7631 | 0.9007 |
sun2021/default | 0.7582 | 0.8851 |
schreiber2017/ismir2017 | 0.7511 | 0.8936 |
schreiber2018/ismir2018 | 0.7163 | 0.8972 |
boeck2019/multi_task | 0.6936 | 0.9000 |
schreiber2014/default | 0.6922 | 0.8794 |
boeck2015/tempodetector2016_default | 0.6858 | 0.9000 |
boeck2019/multi_task_hjdb | 0.6851 | 0.8972 |
echonest/version_3_2_1 | 0.6766 | 0.8539 |
percival2014/stem | 0.6702 | 0.9000 |
gkiokas2012/default | 0.6610 | 0.8972 |
zplane/auftakt_v3 | 0.6461 | 0.8660 |
klapuri2006/percival2014 | 0.6270 | 0.8865 |
davies2009/mirex_qm_tempotracker | 0.6085 | 0.8645 |
oliveira2010/ibt | 0.5794 | 0.8603 |
scheirer1998/percival2014 | 0.4957 | 0.7149 |
Table 3: Mean accuracy of estimates compared to version 1.0 with 4% tolerance ordered by Accuracy1.
Raw data Accuracy1: CSV JSON LATEX PICKLE
Raw data Accuracy2: CSV JSON LATEX PICKLE
Accuracy1 for 1.0
Figure 3: Mean Accuracy1 for estimates compared to version 1.0 depending on tolerance.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy2 for 1.0
Figure 4: Mean Accuracy2 for estimates compared to version 1.0 depending on tolerance.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy Results for 2.0
Estimator | Accuracy1 | Accuracy2 |
---|---|---|
schreiber2017/mirex2017 | 0.9092 | 0.9872 |
boeck2020/dar | 0.8475 | 0.9908 |
schreiber2018/cnn | 0.8291 | 0.9844 |
schreiber2018/fcn | 0.8277 | 0.9794 |
sun2021/default | 0.8206 | 0.9638 |
schreiber2017/ismir2017 | 0.8184 | 0.9730 |
schreiber2018/ismir2018 | 0.7809 | 0.9766 |
schreiber2014/default | 0.7617 | 0.9603 |
boeck2019/multi_task | 0.7574 | 0.9773 |
boeck2019/multi_task_hjdb | 0.7489 | 0.9738 |
boeck2015/tempodetector2016_default | 0.7404 | 0.9780 |
echonest/version_3_2_1 | 0.7390 | 0.9291 |
percival2014/stem | 0.7369 | 0.9794 |
gkiokas2012/default | 0.7270 | 0.9801 |
zplane/auftakt_v3 | 0.7021 | 0.9390 |
klapuri2006/percival2014 | 0.6879 | 0.9688 |
davies2009/mirex_qm_tempotracker | 0.6603 | 0.9348 |
oliveira2010/ibt | 0.6305 | 0.9312 |
scheirer1998/percival2014 | 0.5355 | 0.7723 |
Table 4: Mean accuracy of estimates compared to version 2.0 with 4% tolerance ordered by Accuracy1.
Raw data Accuracy1: CSV JSON LATEX PICKLE
Raw data Accuracy2: CSV JSON LATEX PICKLE
Accuracy1 for 2.0
Figure 5: Mean Accuracy1 for estimates compared to version 2.0 depending on tolerance.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy2 for 2.0
Figure 6: Mean Accuracy2 for estimates compared to version 2.0 depending on tolerance.
CSV JSON LATEX PICKLE SVG PDF PNG
Differing Items
For which items did a given estimator not estimate a correct value with respect to a given ground truth? Are there items which are either very difficult, not suitable for the task, or incorrectly annotated and therefore never estimated correctly, regardless which estimator is used?
Differing Items Accuracy1
Items with different tempo annotations (Accuracy1, 4% tolerance) in different versions:
1.0 compared with boeck2015/tempodetector2016_default (443 differences): ‘10118334.clip’ ‘10258351.clip’ ‘104222.clip’ ‘104260.clip’ ‘10503810.clip’ ‘105233.clip’ ‘10563001.clip’ ‘10563039.clip’ ‘1071042.clip’ ‘10766976.clip’ ‘10809231.clip’ … CSV
1.0 compared with boeck2019/multi_task (432 differences): ‘10118334.clip’ ‘10258351.clip’ ‘104222.clip’ ‘104260.clip’ ‘10443543.clip’ ‘10503810.clip’ ‘10563001.clip’ ‘10726039.clip’ ‘10809231.clip’ ‘10875997.clip’ ‘10893272.clip’ … CSV
1.0 compared with boeck2019/multi_task_hjdb (444 differences): ‘10118334.clip’ ‘10258351.clip’ ‘104222.clip’ ‘104260.clip’ ‘10443543.clip’ ‘10503810.clip’ ‘10563001.clip’ ‘10726039.clip’ ‘10809231.clip’ ‘10875997.clip’ ‘10893272.clip’ … CSV
1.0 compared with boeck2020/dar (304 differences): ‘10118334.clip’ ‘10258351.clip’ ‘104222.clip’ ‘104260.clip’ ‘10503810.clip’ ‘10563039.clip’ ‘1071042.clip’ ‘10726039.clip’ ‘10809231.clip’ ‘10875997.clip’ ‘10893272.clip’ … CSV
1.0 compared with davies2009/mirex_qm_tempotracker (552 differences): ‘10118334.clip’ ‘10258351.clip’ ‘104260.clip’ ‘10443543.clip’ ‘10503810.clip’ ‘10563001.clip’ ‘10563039.clip’ ‘1071042.clip’ ‘10726076.clip’ ‘1074945.clip’ ‘10809231.clip’ … CSV
1.0 compared with echonest/version_3_2_1 (456 differences): ‘10118334.clip’ ‘10258351.clip’ ‘104260.clip’ ‘10503810.clip’ ‘10563001.clip’ ‘10563039.clip’ ‘1074945.clip’ ‘10766976.clip’ ‘10809231.clip’ ‘10893272.clip’ ‘10894070.clip’ … CSV
1.0 compared with gkiokas2012/default (478 differences): ‘10118334.clip’ ‘10258351.clip’ ‘10270809.clip’ ‘104222.clip’ ‘104260.clip’ ‘10443543.clip’ ‘10503810.clip’ ‘10563001.clip’ ‘10563039.clip’ ‘1074945.clip’ ‘10809231.clip’ … CSV
1.0 compared with klapuri2006/percival2014 (526 differences): ‘10118334.clip’ ‘10258351.clip’ ‘104222.clip’ ‘104260.clip’ ‘10443543.clip’ ‘105009.clip’ ‘10503810.clip’ ‘105233.clip’ ‘10563039.clip’ ‘1071042.clip’ ‘10726076.clip’ … CSV
1.0 compared with oliveira2010/ibt (593 differences): ‘10118334.clip’ ‘10258351.clip’ ‘104222.clip’ ‘104260.clip’ ‘10443543.clip’ ‘10503810.clip’ ‘10563039.clip’ ‘1071042.clip’ ‘10726058.clip’ ‘10726076.clip’ ‘1074945.clip’ … CSV
1.0 compared with percival2014/stem (465 differences): ‘10118334.clip’ ‘10258351.clip’ ‘104222.clip’ ‘104260.clip’ ‘10443543.clip’ ‘10503810.clip’ ‘10563039.clip’ ‘1071042.clip’ ‘10726076.clip’ ‘10809231.clip’ ‘10893272.clip’ … CSV
1.0 compared with scheirer1998/percival2014 (711 differences): ‘10118334.clip’ ‘10258351.clip’ ‘10270809.clip’ ‘10332517.clip’ ‘104186.clip’ ‘104222.clip’ ‘104260.clip’ ‘10443543.clip’ ‘105009.clip’ ‘10503810.clip’ ‘105233.clip’ … CSV
1.0 compared with schreiber2014/default (434 differences): ‘10118334.clip’ ‘10258351.clip’ ‘104222.clip’ ‘104260.clip’ ‘10443543.clip’ ‘105009.clip’ ‘10503810.clip’ ‘10563039.clip’ ‘1071042.clip’ ‘10726058.clip’ ‘10809231.clip’ … CSV
1.0 compared with schreiber2017/ismir2017 (351 differences): ‘10118334.clip’ ‘10258351.clip’ ‘104260.clip’ ‘10443543.clip’ ‘10503810.clip’ ‘10563039.clip’ ‘10809231.clip’ ‘10893272.clip’ ‘10894286.clip’ ‘11173645.clip’ ‘11430821.clip’ … CSV
1.0 compared with schreiber2017/mirex2017 (233 differences): ‘10118334.clip’ ‘10258351.clip’ ‘10503810.clip’ ‘10563039.clip’ ‘10809231.clip’ ‘10893272.clip’ ‘11173645.clip’ ‘11430821.clip’ ‘1173974.clip’ ‘11883189.clip’ ‘12185327.clip’ … CSV
1.0 compared with schreiber2018/cnn (332 differences): ‘10118334.clip’ ‘10258351.clip’ ‘10389587.clip’ ‘104222.clip’ ‘104260.clip’ ‘10503810.clip’ ‘10563001.clip’ ‘10563039.clip’ ‘1071042.clip’ ‘10726058.clip’ ‘10726076.clip’ … CSV
1.0 compared with schreiber2018/fcn (334 differences): ‘10118334.clip’ ‘10258351.clip’ ‘104222.clip’ ‘104260.clip’ ‘10503810.clip’ ‘10563001.clip’ ‘10563039.clip’ ‘1071042.clip’ ‘10726058.clip’ ‘10766976.clip’ ‘10809231.clip’ … CSV
1.0 compared with schreiber2018/ismir2018 (400 differences): ‘10118334.clip’ ‘10258351.clip’ ‘10389587.clip’ ‘104222.clip’ ‘104260.clip’ ‘10503810.clip’ ‘10563039.clip’ ‘1071042.clip’ ‘10809231.clip’ ‘10875997.clip’ ‘10893272.clip’ … CSV
1.0 compared with sun2021/default (341 differences): ‘10118334.clip’ ‘10258351.clip’ ‘10389587.clip’ ‘104222.clip’ ‘104260.clip’ ‘10503810.clip’ ‘105233.clip’ ‘10563039.clip’ ‘1071042.clip’ ‘10726039.clip’ ‘10726076.clip’ … CSV
1.0 compared with zplane/auftakt_v3 (499 differences): ‘10118334.clip’ ‘10258351.clip’ ‘104222.clip’ ‘104260.clip’ ‘10443543.clip’ ‘10503810.clip’ ‘1071042.clip’ ‘10726032.clip’ ‘10726058.clip’ ‘10726076.clip’ ‘1074945.clip’ … CSV
2.0 compared with boeck2015/tempodetector2016_default (366 differences): ‘10258351.clip’ ‘104222.clip’ ‘104260.clip’ ‘105233.clip’ ‘10563001.clip’ ‘1071042.clip’ ‘10766976.clip’ ‘10875997.clip’ ‘10894070.clip’ ‘10894286.clip’ ‘1094919.clip’ … CSV
2.0 compared with boeck2019/multi_task (342 differences): ‘10258351.clip’ ‘104222.clip’ ‘104260.clip’ ‘10443543.clip’ ‘10563001.clip’ ‘10726039.clip’ ‘10875997.clip’ ‘10894070.clip’ ‘10894286.clip’ ‘11116238.clip’ ‘11173645.clip’ … CSV
2.0 compared with boeck2019/multi_task_hjdb (354 differences): ‘10258351.clip’ ‘104222.clip’ ‘104260.clip’ ‘10443543.clip’ ‘10563001.clip’ ‘10726039.clip’ ‘10875997.clip’ ‘10894070.clip’ ‘10894286.clip’ ‘11116238.clip’ ‘11173645.clip’ … CSV
2.0 compared with boeck2020/dar (215 differences): ‘10258351.clip’ ‘104222.clip’ ‘104260.clip’ ‘1071042.clip’ ‘10726039.clip’ ‘10875997.clip’ ‘10894070.clip’ ‘10894286.clip’ ‘11173645.clip’ ‘11401306.clip’ ‘11622.clip’ … CSV
2.0 compared with davies2009/mirex_qm_tempotracker (479 differences): ‘10258351.clip’ ‘104260.clip’ ‘10443543.clip’ ‘10563001.clip’ ‘10563039.clip’ ‘1071042.clip’ ‘10726076.clip’ ‘1074945.clip’ ‘10894070.clip’ ‘10894286.clip’ ‘11030307.clip’ … CSV
2.0 compared with echonest/version_3_2_1 (368 differences): ‘10258351.clip’ ‘104260.clip’ ‘10563001.clip’ ‘1074945.clip’ ‘10766976.clip’ ‘10893272.clip’ ‘10894070.clip’ ‘10894286.clip’ ‘11173645.clip’ ‘11409728.clip’ ‘11430821.clip’ … CSV
2.0 compared with gkiokas2012/default (385 differences): ‘10258351.clip’ ‘10270809.clip’ ‘104222.clip’ ‘104260.clip’ ‘10443543.clip’ ‘10563001.clip’ ‘1074945.clip’ ‘10894286.clip’ ‘11030307.clip’ ‘11173645.clip’ ‘11471649.clip’ … CSV
2.0 compared with klapuri2006/percival2014 (440 differences): ‘10258351.clip’ ‘104222.clip’ ‘104260.clip’ ‘10443543.clip’ ‘105009.clip’ ‘105233.clip’ ‘10563039.clip’ ‘1071042.clip’ ‘10894070.clip’ ‘10894286.clip’ ‘1108465.clip’ … CSV
2.0 compared with oliveira2010/ibt (521 differences): ‘10118334.clip’ ‘10258351.clip’ ‘104222.clip’ ‘104260.clip’ ‘10443543.clip’ ‘10563039.clip’ ‘1071042.clip’ ‘10726058.clip’ ‘10726076.clip’ ‘1074945.clip’ ‘10894070.clip’ … CSV
2.0 compared with percival2014/stem (371 differences): ‘10258351.clip’ ‘104222.clip’ ‘104260.clip’ ‘10443543.clip’ ‘10563039.clip’ ‘1071042.clip’ ‘10894286.clip’ ‘11030307.clip’ ‘11116238.clip’ ‘11173645.clip’ ‘11554698.clip’ … CSV
2.0 compared with scheirer1998/percival2014 (655 differences): ‘10118334.clip’ ‘10258351.clip’ ‘10270809.clip’ ‘10332517.clip’ ‘104186.clip’ ‘104222.clip’ ‘104260.clip’ ‘10443543.clip’ ‘105009.clip’ ‘105233.clip’ ‘10563001.clip’ … CSV
2.0 compared with schreiber2014/default (336 differences): ‘10258351.clip’ ‘104222.clip’ ‘104260.clip’ ‘10443543.clip’ ‘105009.clip’ ‘1071042.clip’ ‘10726058.clip’ ‘10894286.clip’ ‘11030307.clip’ ‘11116238.clip’ ‘11173645.clip’ … CSV
2.0 compared with schreiber2017/ismir2017 (256 differences): ‘10258351.clip’ ‘104260.clip’ ‘10443543.clip’ ‘10894286.clip’ ‘11173645.clip’ ‘11612127.clip’ ‘11622.clip’ ‘1162915.clip’ ‘11812770.clip’ ‘12185327.clip’ ‘1245162.clip’ … CSV
2.0 compared with schreiber2017/mirex2017 (128 differences): ‘10258351.clip’ ‘11173645.clip’ ‘11612127.clip’ ‘12185327.clip’ ‘1245162.clip’ ‘12638738.clip’ ‘129570.clip’ ‘13041056.clip’ ‘13086293.clip’ ‘1358509.clip’ ‘1393863.clip’ … CSV
2.0 compared with schreiber2018/cnn (241 differences): ‘10258351.clip’ ‘10389587.clip’ ‘104222.clip’ ‘104260.clip’ ‘10563001.clip’ ‘1071042.clip’ ‘10726058.clip’ ‘10726076.clip’ ‘10875997.clip’ ‘10894070.clip’ ‘10894286.clip’ … CSV
2.0 compared with schreiber2018/fcn (243 differences): ‘10258351.clip’ ‘104222.clip’ ‘104260.clip’ ‘10563001.clip’ ‘1071042.clip’ ‘10726058.clip’ ‘10766976.clip’ ‘10875997.clip’ ‘10894286.clip’ ‘1094938.clip’ ‘11030307.clip’ … CSV
2.0 compared with schreiber2018/ismir2018 (309 differences): ‘10258351.clip’ ‘10389587.clip’ ‘104222.clip’ ‘104260.clip’ ‘1071042.clip’ ‘10875997.clip’ ‘10894070.clip’ ‘10894286.clip’ ‘11173645.clip’ ‘11612127.clip’ ‘11622.clip’ … CSV
2.0 compared with sun2021/default (253 differences): ‘10258351.clip’ ‘10389587.clip’ ‘104222.clip’ ‘104260.clip’ ‘105233.clip’ ‘1071042.clip’ ‘10726039.clip’ ‘10726076.clip’ ‘10875997.clip’ ‘10894070.clip’ ‘10894286.clip’ … CSV
2.0 compared with zplane/auftakt_v3 (420 differences): ‘10118334.clip’ ‘10258351.clip’ ‘104222.clip’ ‘104260.clip’ ‘10443543.clip’ ‘1071042.clip’ ‘10726032.clip’ ‘10726058.clip’ ‘10726076.clip’ ‘1074945.clip’ ‘10894286.clip’ … CSV
None of the estimators estimated the following 46 items ‘correctly’ using Accuracy1: ‘10258351.clip’ ‘11173645.clip’ ‘12185327.clip’ ‘1245162.clip’ ‘12638738.clip’ ‘129570.clip’ ‘1358509.clip’ ‘1393863.clip’ ‘1433718.clip’ ‘1492191.clip’ ‘14970371.clip’ … CSV
Differing Items Accuracy2
Items with different tempo annotations (Accuracy2, 4% tolerance) in different versions:
1.0 compared with boeck2015/tempodetector2016_default (141 differences): ‘10118334.clip’ ‘104260.clip’ ‘10503810.clip’ ‘105233.clip’ ‘10563039.clip’ ‘10809231.clip’ ‘10893272.clip’ ‘1108465.clip’ ‘11173645.clip’ ‘11430821.clip’ ‘1173974.clip’ … CSV
1.0 compared with boeck2019/multi_task (141 differences): ‘10118334.clip’ ‘10503810.clip’ ‘10809231.clip’ ‘10893272.clip’ ‘11173645.clip’ ‘11430821.clip’ ‘1173974.clip’ ‘11883189.clip’ ‘1245162.clip’ ‘12643846.clip’ ‘12906077.clip’ … CSV
1.0 compared with boeck2019/multi_task_hjdb (145 differences): ‘10118334.clip’ ‘10503810.clip’ ‘10809231.clip’ ‘10893272.clip’ ‘11173645.clip’ ‘11430821.clip’ ‘1173974.clip’ ‘11883189.clip’ ‘1245162.clip’ ‘12643846.clip’ ‘12906123.clip’ … CSV
1.0 compared with boeck2020/dar (129 differences): ‘10118334.clip’ ‘10503810.clip’ ‘10563039.clip’ ‘10809231.clip’ ‘10893272.clip’ ‘11173645.clip’ ‘11430821.clip’ ‘1173974.clip’ ‘11883189.clip’ ‘1245162.clip’ ‘1248986.clip’ … CSV
1.0 compared with davies2009/mirex_qm_tempotracker (191 differences): ‘10118334.clip’ ‘10503810.clip’ ‘10563039.clip’ ‘10726076.clip’ ‘10809231.clip’ ‘10893272.clip’ ‘1108465.clip’ ‘11193878.clip’ ‘11430821.clip’ ‘11552767.clip’ ‘1173974.clip’ … CSV
1.0 compared with echonest/version_3_2_1 (206 differences): ‘10118334.clip’ ‘10503810.clip’ ‘10563039.clip’ ‘10766976.clip’ ‘10809231.clip’ ‘10893272.clip’ ‘11173645.clip’ ‘11430821.clip’ ‘1173974.clip’ ‘1173975.clip’ ‘11883189.clip’ … CSV
1.0 compared with gkiokas2012/default (145 differences): ‘10118334.clip’ ‘10503810.clip’ ‘10563039.clip’ ‘10809231.clip’ ‘10893272.clip’ ‘11173645.clip’ ‘11430821.clip’ ‘1173974.clip’ ‘11883189.clip’ ‘1245162.clip’ ‘12643846.clip’ … CSV
1.0 compared with klapuri2006/percival2014 (160 differences): ‘10118334.clip’ ‘105009.clip’ ‘10503810.clip’ ‘105233.clip’ ‘10563039.clip’ ‘10726076.clip’ ‘10809231.clip’ ‘10893272.clip’ ‘1108465.clip’ ‘11430821.clip’ ‘1173974.clip’ … CSV
1.0 compared with oliveira2010/ibt (197 differences): ‘10118334.clip’ ‘104260.clip’ ‘10503810.clip’ ‘10726058.clip’ ‘10726076.clip’ ‘10809231.clip’ ‘10893272.clip’ ‘1107612.clip’ ‘11095374.clip’ ‘11173645.clip’ ‘11430821.clip’ … CSV
1.0 compared with percival2014/stem (141 differences): ‘10118334.clip’ ‘10503810.clip’ ‘10563039.clip’ ‘10726076.clip’ ‘10809231.clip’ ‘10893272.clip’ ‘11173645.clip’ ‘11430821.clip’ ‘1173974.clip’ ‘11883189.clip’ ‘1245162.clip’ … CSV
1.0 compared with scheirer1998/percival2014 (402 differences): ‘10118334.clip’ ‘10270809.clip’ ‘104260.clip’ ‘105009.clip’ ‘10503810.clip’ ‘10563001.clip’ ‘10563039.clip’ ‘10726076.clip’ ‘1077416.clip’ ‘10809231.clip’ ‘10875997.clip’ … CSV
1.0 compared with schreiber2014/default (170 differences): ‘10118334.clip’ ‘10503810.clip’ ‘10563039.clip’ ‘10726058.clip’ ‘10809231.clip’ ‘10893272.clip’ ‘11173645.clip’ ‘11430821.clip’ ‘1173974.clip’ ‘11883189.clip’ ‘1245162.clip’ … CSV
1.0 compared with schreiber2017/ismir2017 (150 differences): ‘10118334.clip’ ‘10503810.clip’ ‘10563039.clip’ ‘10809231.clip’ ‘10893272.clip’ ‘11173645.clip’ ‘11430821.clip’ ‘1173974.clip’ ‘11883189.clip’ ‘1245162.clip’ ‘12643846.clip’ … CSV
1.0 compared with schreiber2017/mirex2017 (130 differences): ‘10118334.clip’ ‘10503810.clip’ ‘10563039.clip’ ‘10809231.clip’ ‘10893272.clip’ ‘11173645.clip’ ‘11430821.clip’ ‘1173974.clip’ ‘11883189.clip’ ‘1245162.clip’ ‘12643846.clip’ … CSV
1.0 compared with schreiber2018/cnn (131 differences): ‘10118334.clip’ ‘10503810.clip’ ‘10563039.clip’ ‘10726058.clip’ ‘10809231.clip’ ‘10893272.clip’ ‘11173645.clip’ ‘11430821.clip’ ‘1173974.clip’ ‘11883189.clip’ ‘1245162.clip’ … CSV
1.0 compared with schreiber2018/fcn (140 differences): ‘10118334.clip’ ‘104260.clip’ ‘10503810.clip’ ‘10563039.clip’ ‘10726058.clip’ ‘10766976.clip’ ‘10809231.clip’ ‘10893272.clip’ ‘11173645.clip’ ‘11430821.clip’ ‘11612127.clip’ … CSV
1.0 compared with schreiber2018/ismir2018 (145 differences): ‘10118334.clip’ ‘10503810.clip’ ‘10563039.clip’ ‘10809231.clip’ ‘10893272.clip’ ‘11173645.clip’ ‘11430821.clip’ ‘1173974.clip’ ‘11883189.clip’ ‘1245162.clip’ ‘12643846.clip’ … CSV
1.0 compared with sun2021/default (162 differences): ‘10118334.clip’ ‘104260.clip’ ‘10503810.clip’ ‘105233.clip’ ‘10563039.clip’ ‘10726076.clip’ ‘10809231.clip’ ‘10893272.clip’ ‘1107612.clip’ ‘11173645.clip’ ‘11430821.clip’ … CSV
1.0 compared with zplane/auftakt_v3 (189 differences): ‘10118334.clip’ ‘10503810.clip’ ‘10726032.clip’ ‘10726058.clip’ ‘10726076.clip’ ‘10809231.clip’ ‘10893272.clip’ ‘11119266.clip’ ‘11430821.clip’ ‘1173974.clip’ ‘11883189.clip’ … CSV
2.0 compared with boeck2015/tempodetector2016_default (31 differences): ‘104260.clip’ ‘105233.clip’ ‘1108465.clip’ ‘11173645.clip’ ‘1358509.clip’ ‘14600040.clip’ ‘164628.clip’ ‘1827592.clip’ ‘208474.clip’ ‘2252893.clip’ ‘2347473.clip’ … CSV
2.0 compared with boeck2019/multi_task (32 differences): ‘11173645.clip’ ‘12906077.clip’ ‘1359069.clip’ ‘1435815.clip’ ‘14600040.clip’ ‘164628.clip’ ‘168497.clip’ ‘168499.clip’ ‘2373182.clip’ ‘2517897.clip’ ‘253654.clip’ … CSV
2.0 compared with boeck2019/multi_task_hjdb (37 differences): ‘11173645.clip’ ‘1245162.clip’ ‘1359069.clip’ ‘1435815.clip’ ‘14600040.clip’ ‘164628.clip’ ‘168497.clip’ ‘168499.clip’ ‘168502.clip’ ‘2373182.clip’ ‘2517897.clip’ … CSV
2.0 compared with boeck2020/dar (13 differences): ‘11173645.clip’ ‘1245162.clip’ ‘13036093.clip’ ‘164628.clip’ ‘168499.clip’ ‘250576.clip’ ‘3333901.clip’ ‘4326130.clip’ ‘458707.clip’ ‘6018930.clip’ ‘8231796.clip’ … CSV
2.0 compared with davies2009/mirex_qm_tempotracker (92 differences): ‘10726076.clip’ ‘1108465.clip’ ‘11193878.clip’ ‘11552767.clip’ ‘12185327.clip’ ‘13036093.clip’ ‘13376370.clip’ ‘1355192.clip’ ‘1359069.clip’ ‘143682.clip’ ‘15416738.clip’ … CSV
2.0 compared with echonest/version_3_2_1 (100 differences): ‘10766976.clip’ ‘11173645.clip’ ‘11430821.clip’ ‘1173975.clip’ ‘13036093.clip’ ‘13065657.clip’ ‘13167246.clip’ ‘13376370.clip’ ‘13561397.clip’ ‘1385105.clip’ ‘13851876.clip’ … CSV
2.0 compared with gkiokas2012/default (28 differences): ‘11173645.clip’ ‘13036093.clip’ ‘1393863.clip’ ‘15416738.clip’ ‘168499.clip’ ‘1827592.clip’ ‘2252893.clip’ ‘2284109.clip’ ‘2347473.clip’ ‘256907.clip’ ‘281623.clip’ … CSV
2.0 compared with klapuri2006/percival2014 (44 differences): ‘105009.clip’ ‘105233.clip’ ‘1108465.clip’ ‘129570.clip’ ‘13376370.clip’ ‘14180121.clip’ ‘14600040.clip’ ‘166285.clip’ ‘168497.clip’ ‘168499.clip’ ‘168502.clip’ … CSV
2.0 compared with oliveira2010/ibt (97 differences): ‘104260.clip’ ‘10563039.clip’ ‘10726058.clip’ ‘10726076.clip’ ‘1107612.clip’ ‘11095374.clip’ ‘11173645.clip’ ‘12185327.clip’ ‘12643846.clip’ ‘129570.clip’ ‘13036093.clip’ … CSV
2.0 compared with percival2014/stem (29 differences): ‘11173645.clip’ ‘1245162.clip’ ‘13851876.clip’ ‘14600040.clip’ ‘15416738.clip’ ‘164628.clip’ ‘168499.clip’ ‘1949678.clip’ ‘2232914.clip’ ‘2411992.clip’ ‘282894.clip’ … CSV
2.0 compared with scheirer1998/percival2014 (321 differences): ‘10118334.clip’ ‘10270809.clip’ ‘104260.clip’ ‘105009.clip’ ‘10563001.clip’ ‘10726076.clip’ ‘1077416.clip’ ‘10875997.clip’ ‘10893272.clip’ ‘1103942.clip’ ‘1108465.clip’ … CSV
2.0 compared with schreiber2014/default (56 differences): ‘10726058.clip’ ‘11173645.clip’ ‘11612127.clip’ ‘14180121.clip’ ‘1447613.clip’ ‘14600040.clip’ ‘14634350.clip’ ‘15952618.clip’ ‘164628.clip’ ‘168497.clip’ ‘168499.clip’ … CSV
2.0 compared with schreiber2017/ismir2017 (38 differences): ‘11173645.clip’ ‘11612127.clip’ ‘1245162.clip’ ‘14180121.clip’ ‘1447613.clip’ ‘14600040.clip’ ‘15952618.clip’ ‘164628.clip’ ‘1827592.clip’ ‘2214125.clip’ ‘2232914.clip’ … CSV
2.0 compared with schreiber2017/mirex2017 (18 differences): ‘11173645.clip’ ‘11612127.clip’ ‘1245162.clip’ ‘1447613.clip’ ‘14600040.clip’ ‘164628.clip’ ‘2232914.clip’ ‘2233308.clip’ ‘3188766.clip’ ‘3732728.clip’ ‘4326130.clip’ … CSV
2.0 compared with schreiber2018/cnn (22 differences): ‘10726058.clip’ ‘11173645.clip’ ‘11612127.clip’ ‘14600040.clip’ ‘15416738.clip’ ‘164628.clip’ ‘168499.clip’ ‘281623.clip’ ‘282894.clip’ ‘3110264.clip’ ‘3176577.clip’ … CSV
2.0 compared with schreiber2018/fcn (29 differences): ‘104260.clip’ ‘10726058.clip’ ‘10766976.clip’ ‘11173645.clip’ ‘14600040.clip’ ‘14634350.clip’ ‘15416738.clip’ ‘164628.clip’ ‘168499.clip’ ‘281623.clip’ ‘3030777.clip’ … CSV
2.0 compared with schreiber2018/ismir2018 (33 differences): ‘11173645.clip’ ‘11612127.clip’ ‘1245162.clip’ ‘12937673.clip’ ‘13851876.clip’ ‘14600040.clip’ ‘15416738.clip’ ‘168499.clip’ ‘1827592.clip’ ‘3073826.clip’ ‘3110264.clip’ … CSV
2.0 compared with sun2021/default (51 differences): ‘104260.clip’ ‘105233.clip’ ‘10726076.clip’ ‘1107612.clip’ ‘11173645.clip’ ‘12185327.clip’ ‘14180121.clip’ ‘15952618.clip’ ‘168499.clip’ ‘1827592.clip’ ‘2284109.clip’ … CSV
2.0 compared with zplane/auftakt_v3 (86 differences): ‘10726032.clip’ ‘10726058.clip’ ‘10726076.clip’ ‘11119266.clip’ ‘11612127.clip’ ‘1173974.clip’ ‘1245162.clip’ ‘12937673.clip’ ‘13036093.clip’ ‘13376370.clip’ ‘1385105.clip’ … CSV
All tracks were estimated ‘correctly’ by at least one system.
Significance of Differences
Estimator | boeck2015/tempodetector2016_default | boeck2019/multi_task | boeck2019/multi_task_hjdb | boeck2020/dar | davies2009/mirex_qm_tempotracker | echonest/version_3_2_1 | gkiokas2012/default | klapuri2006/percival2014 | oliveira2010/ibt | percival2014/stem | scheirer1998/percival2014 | schreiber2014/default | schreiber2017/ismir2017 | schreiber2017/mirex2017 | schreiber2018/cnn | schreiber2018/fcn | schreiber2018/ismir2018 | sun2021/default | zplane/auftakt_v3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
boeck2015/tempodetector2016_default | 1.0000 | 0.1783 | 0.5183 | 0.0000 | 0.0000 | 0.9574 | 0.3552 | 0.0001 | 0.0000 | 0.8385 | 0.0000 | 0.1410 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0005 | 0.0000 | 0.0063 |
boeck2019/multi_task | 0.1783 | 1.0000 | 0.1691 | 0.0000 | 0.0000 | 0.1649 | 0.0242 | 0.0000 | 0.0000 | 0.0725 | 0.0000 | 0.7416 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0393 | 0.0000 | 0.0000 |
boeck2019/multi_task_hjdb | 0.5183 | 0.1691 | 1.0000 | 0.0000 | 0.0000 | 0.4821 | 0.1093 | 0.0000 | 0.0000 | 0.3416 | 0.0000 | 0.2954 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0051 | 0.0000 | 0.0002 |
boeck2020/dar | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0054 | 0.0000 | 0.0566 | 0.0501 | 0.0000 | 0.0019 | 0.0000 |
davies2009/mirex_qm_tempotracker | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0077 | 0.0032 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0012 |
echonest/version_3_2_1 | 0.9574 | 0.1649 | 0.4821 | 0.0000 | 0.0000 | 1.0000 | 0.3904 | 0.0001 | 0.0000 | 0.9125 | 0.0000 | 0.0773 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0006 | 0.0000 | 0.0055 |
gkiokas2012/default | 0.3552 | 0.0242 | 0.1093 | 0.0000 | 0.0000 | 0.3904 | 1.0000 | 0.0028 | 0.0000 | 0.4306 | 0.0000 | 0.0057 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0577 |
klapuri2006/percival2014 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0077 | 0.0001 | 0.0028 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2369 |
oliveira2010/ibt | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0032 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
percival2014/stem | 0.8385 | 0.0725 | 0.3416 | 0.0000 | 0.0000 | 0.9125 | 0.4306 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0120 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0035 |
scheirer1998/percival2014 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2014/default | 0.1410 | 0.7416 | 0.2954 | 0.0000 | 0.0000 | 0.0773 | 0.0057 | 0.0000 | 0.0000 | 0.0120 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0871 | 0.0000 | 0.0000 |
schreiber2017/ismir2017 | 0.0000 | 0.0000 | 0.0000 | 0.0054 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.3282 | 0.4020 | 0.0003 | 0.8944 | 0.0000 |
schreiber2017/mirex2017 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2018/cnn | 0.0000 | 0.0000 | 0.0000 | 0.0566 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.3282 | 0.0000 | 1.0000 | 0.9385 | 0.0000 | 0.3904 | 0.0000 |
schreiber2018/fcn | 0.0000 | 0.0000 | 0.0000 | 0.0501 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.4020 | 0.0000 | 0.9385 | 1.0000 | 0.0000 | 0.5182 | 0.0000 |
schreiber2018/ismir2018 | 0.0005 | 0.0393 | 0.0051 | 0.0000 | 0.0000 | 0.0006 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0871 | 0.0003 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0002 | 0.0000 |
sun2021/default | 0.0000 | 0.0000 | 0.0000 | 0.0019 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.8944 | 0.0000 | 0.3904 | 0.5182 | 0.0002 | 1.0000 | 0.0000 |
zplane/auftakt_v3 | 0.0063 | 0.0000 | 0.0002 | 0.0000 | 0.0012 | 0.0055 | 0.0577 | 0.2369 | 0.0000 | 0.0035 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 |
Table 5: McNemar p-values, using reference annotations 2.0 as groundtruth with Accuracy1 [Gouyon2006]. H0: both estimators disagree with the groundtruth to the same amount. If p<=ɑ, reject H0, i.e. we have a significant difference in the disagreement with the groundtruth. In the table, p-values<0.05 are set in bold.
Estimator | boeck2015/tempodetector2016_default | boeck2019/multi_task | boeck2019/multi_task_hjdb | boeck2020/dar | davies2009/mirex_qm_tempotracker | echonest/version_3_2_1 | gkiokas2012/default | klapuri2006/percival2014 | oliveira2010/ibt | percival2014/stem | scheirer1998/percival2014 | schreiber2014/default | schreiber2017/ismir2017 | schreiber2017/mirex2017 | schreiber2018/cnn | schreiber2018/fcn | schreiber2018/ismir2018 | sun2021/default | zplane/auftakt_v3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
boeck2015/tempodetector2016_default | 1.0000 | 0.5435 | 1.0000 | 0.0000 | 0.0000 | 0.5030 | 0.0680 | 0.0000 | 0.0000 | 0.2657 | 0.0000 | 0.6703 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0057 | 0.0000 | 0.0031 |
boeck2019/multi_task | 0.5435 | 1.0000 | 0.1550 | 0.0000 | 0.0000 | 0.1900 | 0.0124 | 0.0000 | 0.0000 | 0.0368 | 0.0000 | 0.9455 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0401 | 0.0000 | 0.0000 |
boeck2019/multi_task_hjdb | 1.0000 | 0.1550 | 1.0000 | 0.0000 | 0.0000 | 0.5411 | 0.0676 | 0.0000 | 0.0000 | 0.2295 | 0.0000 | 0.5692 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0048 | 0.0000 | 0.0012 |
boeck2020/dar | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0009 | 0.0000 | 0.0350 | 0.0307 | 0.0000 | 0.0028 | 0.0000 |
davies2009/mirex_qm_tempotracker | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0001 | 0.0727 | 0.0038 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0025 |
echonest/version_3_2_1 | 0.5030 | 0.1900 | 0.5411 | 0.0000 | 0.0000 | 1.0000 | 0.2360 | 0.0001 | 0.0000 | 0.6490 | 0.0000 | 0.2143 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0007 | 0.0000 | 0.0172 |
gkiokas2012/default | 0.0680 | 0.0124 | 0.0676 | 0.0000 | 0.0001 | 0.2360 | 1.0000 | 0.0068 | 0.0000 | 0.4541 | 0.0000 | 0.0084 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2410 |
klapuri2006/percival2014 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0727 | 0.0001 | 0.0068 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0899 |
oliveira2010/ibt | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0038 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
percival2014/stem | 0.2657 | 0.0368 | 0.2295 | 0.0000 | 0.0000 | 0.6490 | 0.4541 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0210 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0361 |
scheirer1998/percival2014 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2014/default | 0.6703 | 0.9455 | 0.5692 | 0.0000 | 0.0000 | 0.2143 | 0.0084 | 0.0000 | 0.0000 | 0.0210 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0234 | 0.0000 | 0.0000 |
schreiber2017/ismir2017 | 0.0000 | 0.0000 | 0.0000 | 0.0009 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.2020 | 0.2567 | 0.0007 | 0.5476 | 0.0000 |
schreiber2017/mirex2017 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2018/cnn | 0.0000 | 0.0000 | 0.0000 | 0.0350 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2020 | 0.0000 | 1.0000 | 0.9362 | 0.0000 | 0.5309 | 0.0000 |
schreiber2018/fcn | 0.0000 | 0.0000 | 0.0000 | 0.0307 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2567 | 0.0000 | 0.9362 | 1.0000 | 0.0000 | 0.6556 | 0.0000 |
schreiber2018/ismir2018 | 0.0057 | 0.0401 | 0.0048 | 0.0000 | 0.0000 | 0.0007 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0234 | 0.0007 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 |
sun2021/default | 0.0000 | 0.0000 | 0.0000 | 0.0028 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.5476 | 0.0000 | 0.5309 | 0.6556 | 0.0000 | 1.0000 | 0.0000 |
zplane/auftakt_v3 | 0.0031 | 0.0000 | 0.0012 | 0.0000 | 0.0025 | 0.0172 | 0.2410 | 0.0899 | 0.0000 | 0.0361 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 |
Table 6: McNemar p-values, using reference annotations 1.0 as groundtruth with Accuracy1 [Gouyon2006]. H0: both estimators disagree with the groundtruth to the same amount. If p<=ɑ, reject H0, i.e. we have a significant difference in the disagreement with the groundtruth. In the table, p-values<0.05 are set in bold.
Estimator | boeck2015/tempodetector2016_default | boeck2019/multi_task | boeck2019/multi_task_hjdb | boeck2020/dar | davies2009/mirex_qm_tempotracker | echonest/version_3_2_1 | gkiokas2012/default | klapuri2006/percival2014 | oliveira2010/ibt | percival2014/stem | scheirer1998/percival2014 | schreiber2014/default | schreiber2017/ismir2017 | schreiber2017/mirex2017 | schreiber2018/cnn | schreiber2018/fcn | schreiber2018/ismir2018 | sun2021/default | zplane/auftakt_v3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
boeck2015/tempodetector2016_default | 1.0000 | 1.0000 | 0.4799 | 0.0039 | 0.0000 | 0.0000 | 0.7552 | 0.1175 | 0.0000 | 0.8804 | 0.0000 | 0.0026 | 0.3817 | 0.0470 | 0.2110 | 0.8830 | 0.8804 | 0.0105 | 0.0000 |
boeck2019/multi_task | 1.0000 | 1.0000 | 0.2266 | 0.0005 | 0.0000 | 0.0000 | 0.6177 | 0.1550 | 0.0000 | 0.7359 | 0.0000 | 0.0012 | 0.4709 | 0.0243 | 0.1102 | 0.7428 | 1.0000 | 0.0127 | 0.0000 |
boeck2019/multi_task_hjdb | 0.4799 | 0.2266 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2327 | 0.4500 | 0.0000 | 0.2800 | 0.0000 | 0.0145 | 1.0000 | 0.0019 | 0.0201 | 0.2800 | 0.6718 | 0.0925 | 0.0000 |
boeck2020/dar | 0.0039 | 0.0005 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0081 | 0.0000 | 0.0000 | 0.0025 | 0.0000 | 0.0000 | 0.0000 | 0.3018 | 0.0784 | 0.0025 | 0.0005 | 0.0000 | 0.0000 |
davies2009/mirex_qm_tempotracker | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.5625 | 0.0000 | 0.0000 | 0.7139 | 0.0000 | 0.0000 | 0.0013 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0002 | 0.6612 |
echonest/version_3_2_1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.5625 | 1.0000 | 0.0000 | 0.0000 | 0.8467 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1980 |
gkiokas2012/default | 0.7552 | 0.6177 | 0.2327 | 0.0081 | 0.0000 | 0.0000 | 1.0000 | 0.0365 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.1539 | 0.1325 | 0.3449 | 1.0000 | 0.4731 | 0.0004 | 0.0000 |
klapuri2006/percival2014 | 0.1175 | 0.1550 | 0.4500 | 0.0000 | 0.0000 | 0.0000 | 0.0365 | 1.0000 | 0.0000 | 0.0444 | 0.0000 | 0.1550 | 0.4966 | 0.0003 | 0.0009 | 0.0627 | 0.1690 | 0.4011 | 0.0000 |
oliveira2010/ibt | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.7139 | 0.8467 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.3049 |
percival2014/stem | 0.8804 | 0.7359 | 0.2800 | 0.0025 | 0.0000 | 0.0000 | 1.0000 | 0.0444 | 0.0000 | 1.0000 | 0.0000 | 0.0004 | 0.2221 | 0.0522 | 0.2478 | 1.0000 | 0.5966 | 0.0026 | 0.0000 |
scheirer1998/percival2014 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2014/default | 0.0026 | 0.0012 | 0.0145 | 0.0000 | 0.0013 | 0.0000 | 0.0000 | 0.1550 | 0.0000 | 0.0004 | 0.0000 | 1.0000 | 0.0009 | 0.0000 | 0.0000 | 0.0000 | 0.0014 | 0.5758 | 0.0002 |
schreiber2017/ismir2017 | 0.3817 | 0.4709 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1539 | 0.4966 | 0.0000 | 0.2221 | 0.0000 | 0.0009 | 1.0000 | 0.0000 | 0.0090 | 0.1877 | 0.4996 | 0.0854 | 0.0000 |
schreiber2017/mirex2017 | 0.0470 | 0.0243 | 0.0019 | 0.3018 | 0.0000 | 0.0000 | 0.1325 | 0.0003 | 0.0000 | 0.0522 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.5235 | 0.0433 | 0.0107 | 0.0000 | 0.0000 |
schreiber2018/cnn | 0.2110 | 0.1102 | 0.0201 | 0.0784 | 0.0000 | 0.0000 | 0.3449 | 0.0009 | 0.0000 | 0.2478 | 0.0000 | 0.0000 | 0.0090 | 0.5235 | 1.0000 | 0.1892 | 0.0614 | 0.0000 | 0.0000 |
schreiber2018/fcn | 0.8830 | 0.7428 | 0.2800 | 0.0025 | 0.0000 | 0.0000 | 1.0000 | 0.0627 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.1877 | 0.0433 | 0.1892 | 1.0000 | 0.6076 | 0.0026 | 0.0000 |
schreiber2018/ismir2018 | 0.8804 | 1.0000 | 0.6718 | 0.0005 | 0.0000 | 0.0000 | 0.4731 | 0.1690 | 0.0000 | 0.5966 | 0.0000 | 0.0014 | 0.4996 | 0.0107 | 0.0614 | 0.6076 | 1.0000 | 0.0133 | 0.0000 |
sun2021/default | 0.0105 | 0.0127 | 0.0925 | 0.0000 | 0.0002 | 0.0000 | 0.0004 | 0.4011 | 0.0000 | 0.0026 | 0.0000 | 0.5758 | 0.0854 | 0.0000 | 0.0000 | 0.0026 | 0.0133 | 1.0000 | 0.0001 |
zplane/auftakt_v3 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.6612 | 0.1980 | 0.0000 | 0.0000 | 0.3049 | 0.0000 | 0.0000 | 0.0002 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 1.0000 |
Table 7: McNemar p-values, using reference annotations 2.0 as groundtruth with Accuracy2 [Gouyon2006]. H0: both estimators disagree with the groundtruth to the same amount. If p<=ɑ, reject H0, i.e. we have a significant difference in the disagreement with the groundtruth. In the table, p-values<0.05 are set in bold.
Estimator | boeck2015/tempodetector2016_default | boeck2019/multi_task | boeck2019/multi_task_hjdb | boeck2020/dar | davies2009/mirex_qm_tempotracker | echonest/version_3_2_1 | gkiokas2012/default | klapuri2006/percival2014 | oliveira2010/ibt | percival2014/stem | scheirer1998/percival2014 | schreiber2014/default | schreiber2017/ismir2017 | schreiber2017/mirex2017 | schreiber2018/cnn | schreiber2018/fcn | schreiber2018/ismir2018 | sun2021/default | zplane/auftakt_v3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
boeck2015/tempodetector2016_default | 1.0000 | 0.8918 | 0.6936 | 0.0884 | 0.0000 | 0.0000 | 0.6778 | 0.0327 | 0.0000 | 0.8918 | 0.0000 | 0.0008 | 0.2717 | 0.1263 | 0.2116 | 1.0000 | 0.6655 | 0.0154 | 0.0000 |
boeck2019/multi_task | 0.8918 | 1.0000 | 0.3437 | 0.0501 | 0.0000 | 0.0000 | 0.6516 | 0.0248 | 0.0000 | 1.0000 | 0.0000 | 0.0001 | 0.2221 | 0.0614 | 0.1325 | 1.0000 | 0.6655 | 0.0170 | 0.0000 |
boeck2019/multi_task_hjdb | 0.6936 | 0.3437 | 1.0000 | 0.0070 | 0.0000 | 0.0000 | 1.0000 | 0.0919 | 0.0000 | 0.6587 | 0.0000 | 0.0013 | 0.5515 | 0.0135 | 0.0385 | 0.5601 | 0.8918 | 0.0647 | 0.0000 |
boeck2020/dar | 0.0884 | 0.0501 | 0.0070 | 1.0000 | 0.0000 | 0.0000 | 0.0090 | 0.0000 | 0.0000 | 0.0501 | 0.0000 | 0.0000 | 0.0008 | 1.0000 | 0.8555 | 0.0895 | 0.0139 | 0.0000 | 0.0000 |
davies2009/mirex_qm_tempotracker | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.2699 | 0.0000 | 0.0041 | 0.6634 | 0.0000 | 0.0000 | 0.0783 | 0.0002 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0176 | 0.9312 |
echonest/version_3_2_1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2699 | 1.0000 | 0.0000 | 0.0000 | 0.4517 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1219 |
gkiokas2012/default | 0.6778 | 0.6516 | 1.0000 | 0.0090 | 0.0000 | 0.0000 | 1.0000 | 0.0722 | 0.0000 | 0.6516 | 0.0000 | 0.0003 | 0.5515 | 0.0275 | 0.0288 | 0.5424 | 1.0000 | 0.0270 | 0.0000 |
klapuri2006/percival2014 | 0.0327 | 0.0248 | 0.0919 | 0.0000 | 0.0041 | 0.0000 | 0.0722 | 1.0000 | 0.0002 | 0.0163 | 0.0000 | 0.2530 | 0.2203 | 0.0000 | 0.0001 | 0.0225 | 0.0674 | 0.9020 | 0.0008 |
oliveira2010/ibt | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.6634 | 0.4517 | 0.0000 | 0.0002 | 1.0000 | 0.0000 | 0.0000 | 0.0048 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0005 | 0.4655 |
percival2014/stem | 0.8918 | 1.0000 | 0.6587 | 0.0501 | 0.0000 | 0.0000 | 0.6516 | 0.0163 | 0.0000 | 1.0000 | 0.0000 | 0.0001 | 0.2430 | 0.0708 | 0.1742 | 1.0000 | 0.6440 | 0.0125 | 0.0000 |
scheirer1998/percival2014 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2014/default | 0.0008 | 0.0001 | 0.0013 | 0.0000 | 0.0783 | 0.0001 | 0.0003 | 0.2530 | 0.0048 | 0.0001 | 0.0000 | 1.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0005 | 0.3662 | 0.0204 |
schreiber2017/ismir2017 | 0.2717 | 0.2221 | 0.5515 | 0.0008 | 0.0002 | 0.0000 | 0.5515 | 0.2203 | 0.0000 | 0.2430 | 0.0000 | 0.0001 | 1.0000 | 0.0000 | 0.0034 | 0.1641 | 0.5327 | 0.1550 | 0.0000 |
schreiber2017/mirex2017 | 0.1263 | 0.0614 | 0.0135 | 1.0000 | 0.0000 | 0.0000 | 0.0275 | 0.0000 | 0.0000 | 0.0708 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 1.0000 | 0.0987 | 0.0201 | 0.0001 | 0.0000 |
schreiber2018/cnn | 0.2116 | 0.1325 | 0.0385 | 0.8555 | 0.0000 | 0.0000 | 0.0288 | 0.0001 | 0.0000 | 0.1742 | 0.0000 | 0.0000 | 0.0034 | 1.0000 | 1.0000 | 0.1221 | 0.0201 | 0.0000 | 0.0000 |
schreiber2018/fcn | 1.0000 | 1.0000 | 0.5601 | 0.0895 | 0.0000 | 0.0000 | 0.5424 | 0.0225 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.1641 | 0.0987 | 0.1221 | 1.0000 | 0.5114 | 0.0054 | 0.0000 |
schreiber2018/ismir2018 | 0.6655 | 0.6655 | 0.8918 | 0.0139 | 0.0000 | 0.0000 | 1.0000 | 0.0674 | 0.0000 | 0.6440 | 0.0000 | 0.0005 | 0.5327 | 0.0201 | 0.0201 | 0.5114 | 1.0000 | 0.0270 | 0.0000 |
sun2021/default | 0.0154 | 0.0170 | 0.0647 | 0.0000 | 0.0176 | 0.0000 | 0.0270 | 0.9020 | 0.0005 | 0.0125 | 0.0000 | 0.3662 | 0.1550 | 0.0001 | 0.0000 | 0.0054 | 0.0270 | 1.0000 | 0.0053 |
zplane/auftakt_v3 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.9312 | 0.1219 | 0.0000 | 0.0008 | 0.4655 | 0.0000 | 0.0000 | 0.0204 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0053 | 1.0000 |
Table 8: McNemar p-values, using reference annotations 1.0 as groundtruth with Accuracy2 [Gouyon2006]. H0: both estimators disagree with the groundtruth to the same amount. If p<=ɑ, reject H0, i.e. we have a significant difference in the disagreement with the groundtruth. In the table, p-values<0.05 are set in bold.
Accuracy1 on Tempo-Subsets
How well does an estimator perform, when only taking a subset of the reference annotations into account? The graphs show mean Accuracy1 for reference subsets with tempi in [T-10,T+10] BPM. Note that the graphs do not show confidence intervals and that some values may be based on very few estimates.
Accuracy1 on Tempo-Subsets for 1.0
Figure 7: Mean Accuracy1 for estimates compared to version 1.0 for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy1 on Tempo-Subsets for 2.0
Figure 8: Mean Accuracy1 for estimates compared to version 2.0 for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy2 on Tempo-Subsets
How well does an estimator perform, when only taking a subset of the reference annotations into account? The graphs show mean Accuracy2 for reference subsets with tempi in [T-10,T+10] BPM. Note that the graphs do not show confidence intervals and that some values may be based on very few estimates.
Accuracy2 on Tempo-Subsets for 1.0
Figure 9: Mean Accuracy2 for estimates compared to version 1.0 for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy2 on Tempo-Subsets for 2.0
Figure 10: Mean Accuracy2 for estimates compared to version 2.0 for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated Accuracy1 for Tempo
When fitting a generalized additive model (GAM) to Accuracy1-values and a ground truth, what Accuracy1 can we expect with confidence?
Estimated Accuracy1 for Tempo for 1.0
Predictions of GAMs trained on Accuracy1 for estimates for reference 1.0.
Figure 11: Accuracy1 predictions of a generalized additive model (GAM) fit to Accuracy1 results for 1.0. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated Accuracy1 for Tempo for 2.0
Predictions of GAMs trained on Accuracy1 for estimates for reference 2.0.
Figure 12: Accuracy1 predictions of a generalized additive model (GAM) fit to Accuracy1 results for 2.0. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated Accuracy2 for Tempo
When fitting a generalized additive model (GAM) to Accuracy2-values and a ground truth, what Accuracy2 can we expect with confidence?
Estimated Accuracy2 for Tempo for 1.0
Predictions of GAMs trained on Accuracy2 for estimates for reference 1.0.
Figure 13: Accuracy2 predictions of a generalized additive model (GAM) fit to Accuracy2 results for 1.0. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated Accuracy2 for Tempo for 2.0
Predictions of GAMs trained on Accuracy2 for estimates for reference 2.0.
Figure 14: Accuracy2 predictions of a generalized additive model (GAM) fit to Accuracy2 results for 2.0. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
OE1 and OE2
OE1 is defined as octave error between an estimate E
and a reference value R
.This means that the most common errors—by a factor of 2 or ½—have the same magnitude, namely 1: OE2(E) = log2(E/R)
.
OE2 is the signed OE1 corresponding to the minimum absolute OE1 allowing the octaveerrors 2, 3, 1/2, and 1/3: OE2(E) = arg minx(|x|) with x ∈ {OE1(E), OE1(2E), OE1(3E), OE1(½E), OE1(⅓E)}
Mean OE1/OE2 Results for 1.0
Estimator | OE1_MEAN | OE1_STDEV | OE2_MEAN | OE2_STDEV |
---|---|---|---|---|
schreiber2017/mirex2017 | 0.0430 | 0.3048 | -0.0044 | 0.0699 |
sun2021/default | 0.1207 | 0.3878 | -0.0172 | 0.0879 |
schreiber2018/cnn | 0.1386 | 0.3923 | -0.0046 | 0.0729 |
boeck2020/dar | 0.1026 | 0.3999 | -0.0031 | 0.0683 |
schreiber2018/fcn | 0.1050 | 0.4075 | -0.0064 | 0.0772 |
schreiber2017/ismir2017 | 0.0678 | 0.4191 | -0.0091 | 0.0859 |
schreiber2018/ismir2018 | 0.1355 | 0.4572 | -0.0088 | 0.0824 |
echonest/version_3_2_1 | 0.0985 | 0.4642 | -0.0089 | 0.1044 |
schreiber2014/default | -0.0013 | 0.4664 | -0.0159 | 0.0956 |
boeck2019/multi_task | 0.0907 | 0.4862 | -0.0033 | 0.0793 |
boeck2019/multi_task_hjdb | 0.0997 | 0.4925 | -0.0025 | 0.0819 |
boeck2015/tempodetector2016_default | 0.2135 | 0.4983 | -0.0046 | 0.0765 |
percival2014/stem | 0.0307 | 0.5103 | -0.0040 | 0.0751 |
zplane/auftakt_v3 | 0.1116 | 0.5119 | -0.0136 | 0.1059 |
gkiokas2012/default | 0.0821 | 0.5199 | -0.0076 | 0.0831 |
davies2009/mirex_qm_tempotracker | 0.2614 | 0.5321 | 0.0221 | 0.0914 |
oliveira2010/ibt | 0.2509 | 0.5421 | -0.0066 | 0.0984 |
klapuri2006/percival2014 | 0.1444 | 0.5490 | -0.0051 | 0.0839 |
scheirer1998/percival2014 | 0.0736 | 0.5693 | 0.0302 | 0.1589 |
Table 9: Mean OE1/OE2 for estimates compared to version 1.0 ordered by standard deviation.
Raw data OE1: CSV JSON LATEX PICKLE
Raw data OE2: CSV JSON LATEX PICKLE
OE1 distribution for 1.0
Figure 15: OE1 for estimates compared to version 1.0. Shown are the mean OE1 and an empirical distribution of the sample, using kernel density estimation (KDE).
CSV JSON LATEX PICKLE SVG PDF PNG
OE2 distribution for 1.0
Figure 16: OE2 for estimates compared to version 1.0. Shown are the mean OE2 and an empirical distribution of the sample, using kernel density estimation (KDE).
CSV JSON LATEX PICKLE SVG PDF PNG
Mean OE1/OE2 Results for 2.0
Estimator | OE1_MEAN | OE1_STDEV | OE2_MEAN | OE2_STDEV |
---|---|---|---|---|
schreiber2017/mirex2017 | 0.0394 | 0.2958 | -0.0044 | 0.0384 |
sun2021/default | 0.1172 | 0.3845 | -0.0187 | 0.0664 |
schreiber2018/cnn | 0.1350 | 0.3886 | -0.0046 | 0.0441 |
boeck2020/dar | 0.0991 | 0.3962 | -0.0041 | 0.0368 |
schreiber2018/fcn | 0.1014 | 0.4024 | -0.0064 | 0.0517 |
schreiber2017/ismir2017 | 0.0643 | 0.4141 | -0.0091 | 0.0629 |
schreiber2018/ismir2018 | 0.1320 | 0.4518 | -0.0084 | 0.0590 |
echonest/version_3_2_1 | 0.0950 | 0.4614 | -0.0132 | 0.0875 |
schreiber2014/default | -0.0048 | 0.4615 | -0.0159 | 0.0760 |
boeck2019/multi_task | 0.0872 | 0.4829 | -0.0050 | 0.0561 |
boeck2019/multi_task_hjdb | 0.0962 | 0.4887 | -0.0056 | 0.0616 |
boeck2015/tempodetector2016_default | 0.2100 | 0.4957 | -0.0049 | 0.0487 |
zplane/auftakt_v3 | 0.1080 | 0.5032 | -0.0183 | 0.0921 |
percival2014/stem | 0.0271 | 0.5040 | -0.0036 | 0.0510 |
gkiokas2012/default | 0.0786 | 0.5136 | -0.0074 | 0.0581 |
davies2009/mirex_qm_tempotracker | 0.2578 | 0.5266 | 0.0229 | 0.0714 |
oliveira2010/ibt | 0.2473 | 0.5368 | -0.0074 | 0.0815 |
klapuri2006/percival2014 | 0.1409 | 0.5433 | -0.0053 | 0.0580 |
scheirer1998/percival2014 | 0.0697 | 0.5681 | 0.0306 | 0.1516 |
Table 10: Mean OE1/OE2 for estimates compared to version 2.0 ordered by standard deviation.
Raw data OE1: CSV JSON LATEX PICKLE
Raw data OE2: CSV JSON LATEX PICKLE
OE1 distribution for 2.0
Figure 17: OE1 for estimates compared to version 2.0. Shown are the mean OE1 and an empirical distribution of the sample, using kernel density estimation (KDE).
CSV JSON LATEX PICKLE SVG PDF PNG
OE2 distribution for 2.0
Figure 18: OE2 for estimates compared to version 2.0. Shown are the mean OE2 and an empirical distribution of the sample, using kernel density estimation (KDE).
CSV JSON LATEX PICKLE SVG PDF PNG
Significance of Differences
Estimator | boeck2015/tempodetector2016_default | boeck2019/multi_task | boeck2019/multi_task_hjdb | boeck2020/dar | davies2009/mirex_qm_tempotracker | echonest/version_3_2_1 | gkiokas2012/default | klapuri2006/percival2014 | oliveira2010/ibt | percival2014/stem | scheirer1998/percival2014 | schreiber2014/default | schreiber2017/ismir2017 | schreiber2017/mirex2017 | schreiber2018/cnn | schreiber2018/fcn | schreiber2018/ismir2018 | sun2021/default | zplane/auftakt_v3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
boeck2015/tempodetector2016_default | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0067 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
boeck2019/multi_task | 0.0000 | 1.0000 | 0.1105 | 0.2844 | 0.0000 | 0.5284 | 0.5252 | 0.0000 | 0.0000 | 0.0000 | 0.3366 | 0.0000 | 0.0314 | 0.0000 | 0.0000 | 0.2300 | 0.0001 | 0.0111 | 0.0805 |
boeck2019/multi_task_hjdb | 0.0000 | 0.1105 | 1.0000 | 0.7938 | 0.0000 | 0.9264 | 0.1975 | 0.0003 | 0.0000 | 0.0000 | 0.0873 | 0.0000 | 0.0042 | 0.0000 | 0.0006 | 0.6574 | 0.0014 | 0.0752 | 0.3264 |
boeck2020/dar | 0.0000 | 0.2844 | 0.7938 | 1.0000 | 0.0000 | 0.7256 | 0.1375 | 0.0018 | 0.0000 | 0.0000 | 0.0573 | 0.0000 | 0.0006 | 0.0000 | 0.0001 | 0.8179 | 0.0018 | 0.0322 | 0.4812 |
davies2009/mirex_qm_tempotracker | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2650 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
echonest/version_3_2_1 | 0.0000 | 0.5284 | 0.9264 | 0.7256 | 0.0000 | 1.0000 | 0.2104 | 0.0004 | 0.0000 | 0.0000 | 0.0453 | 0.0000 | 0.0064 | 0.0000 | 0.0005 | 0.5907 | 0.0018 | 0.0603 | 0.3123 |
gkiokas2012/default | 0.0000 | 0.5252 | 0.1975 | 0.1375 | 0.0000 | 0.2104 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2579 | 0.0000 | 0.2650 | 0.0026 | 0.0000 | 0.0860 | 0.0000 | 0.0032 | 0.0163 |
klapuri2006/percival2014 | 0.0000 | 0.0000 | 0.0003 | 0.0018 | 0.0000 | 0.0004 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.6424 | 0.0045 | 0.4080 | 0.0845 | 0.0025 |
oliveira2010/ibt | 0.0067 | 0.0000 | 0.0000 | 0.0000 | 0.2650 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
percival2014/stem | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0062 | 0.0004 | 0.0011 | 0.3013 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
scheirer1998/percival2014 | 0.0000 | 0.3366 | 0.0873 | 0.0573 | 0.0000 | 0.0453 | 0.2579 | 0.0000 | 0.0000 | 0.0062 | 1.0000 | 0.0000 | 0.9128 | 0.0463 | 0.0000 | 0.0324 | 0.0000 | 0.0017 | 0.0074 |
schreiber2014/default | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0004 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2017/ismir2017 | 0.0000 | 0.0314 | 0.0042 | 0.0006 | 0.0000 | 0.0064 | 0.2650 | 0.0000 | 0.0000 | 0.0011 | 0.9128 | 0.0000 | 1.0000 | 0.0044 | 0.0000 | 0.0003 | 0.0000 | 0.0000 | 0.0002 |
schreiber2017/mirex2017 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0026 | 0.0000 | 0.0000 | 0.3013 | 0.0463 | 0.0000 | 0.0044 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2018/cnn | 0.0000 | 0.0000 | 0.0006 | 0.0001 | 0.0000 | 0.0005 | 0.0000 | 0.6424 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0004 | 0.7457 | 0.0526 | 0.0258 |
schreiber2018/fcn | 0.0000 | 0.2300 | 0.6574 | 0.8179 | 0.0000 | 0.5907 | 0.0860 | 0.0045 | 0.0000 | 0.0000 | 0.0324 | 0.0000 | 0.0003 | 0.0000 | 0.0004 | 1.0000 | 0.0050 | 0.1092 | 0.6207 |
schreiber2018/ismir2018 | 0.0000 | 0.0001 | 0.0014 | 0.0018 | 0.0000 | 0.0018 | 0.0000 | 0.4080 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.7457 | 0.0050 | 1.0000 | 0.1645 | 0.0341 |
sun2021/default | 0.0000 | 0.0111 | 0.0752 | 0.0322 | 0.0000 | 0.0603 | 0.0032 | 0.0845 | 0.0000 | 0.0000 | 0.0017 | 0.0000 | 0.0000 | 0.0000 | 0.0526 | 0.1092 | 0.1645 | 1.0000 | 0.4676 |
zplane/auftakt_v3 | 0.0000 | 0.0805 | 0.3264 | 0.4812 | 0.0000 | 0.3123 | 0.0163 | 0.0025 | 0.0000 | 0.0000 | 0.0074 | 0.0000 | 0.0002 | 0.0000 | 0.0258 | 0.6207 | 0.0341 | 0.4676 | 1.0000 |
Table 11: Paired t-test p-values, using reference annotations 2.0 as groundtruth with OE1. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.
Estimator | boeck2015/tempodetector2016_default | boeck2019/multi_task | boeck2019/multi_task_hjdb | boeck2020/dar | davies2009/mirex_qm_tempotracker | echonest/version_3_2_1 | gkiokas2012/default | klapuri2006/percival2014 | oliveira2010/ibt | percival2014/stem | scheirer1998/percival2014 | schreiber2014/default | schreiber2017/ismir2017 | schreiber2017/mirex2017 | schreiber2018/cnn | schreiber2018/fcn | schreiber2018/ismir2018 | sun2021/default | zplane/auftakt_v3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
boeck2015/tempodetector2016_default | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0067 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
boeck2019/multi_task | 0.0000 | 1.0000 | 0.1105 | 0.2844 | 0.0000 | 0.5284 | 0.5252 | 0.0000 | 0.0000 | 0.0000 | 0.3366 | 0.0000 | 0.0314 | 0.0000 | 0.0000 | 0.2300 | 0.0001 | 0.0111 | 0.0805 |
boeck2019/multi_task_hjdb | 0.0000 | 0.1105 | 1.0000 | 0.7938 | 0.0000 | 0.9264 | 0.1975 | 0.0003 | 0.0000 | 0.0000 | 0.0873 | 0.0000 | 0.0042 | 0.0000 | 0.0006 | 0.6574 | 0.0014 | 0.0752 | 0.3264 |
boeck2020/dar | 0.0000 | 0.2844 | 0.7938 | 1.0000 | 0.0000 | 0.7256 | 0.1375 | 0.0018 | 0.0000 | 0.0000 | 0.0573 | 0.0000 | 0.0006 | 0.0000 | 0.0001 | 0.8179 | 0.0018 | 0.0322 | 0.4812 |
davies2009/mirex_qm_tempotracker | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2650 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
echonest/version_3_2_1 | 0.0000 | 0.5284 | 0.9264 | 0.7256 | 0.0000 | 1.0000 | 0.2104 | 0.0004 | 0.0000 | 0.0000 | 0.0453 | 0.0000 | 0.0064 | 0.0000 | 0.0005 | 0.5907 | 0.0018 | 0.0603 | 0.3123 |
gkiokas2012/default | 0.0000 | 0.5252 | 0.1975 | 0.1375 | 0.0000 | 0.2104 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2579 | 0.0000 | 0.2650 | 0.0026 | 0.0000 | 0.0860 | 0.0000 | 0.0032 | 0.0163 |
klapuri2006/percival2014 | 0.0000 | 0.0000 | 0.0003 | 0.0018 | 0.0000 | 0.0004 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.6424 | 0.0045 | 0.4080 | 0.0845 | 0.0025 |
oliveira2010/ibt | 0.0067 | 0.0000 | 0.0000 | 0.0000 | 0.2650 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
percival2014/stem | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0062 | 0.0004 | 0.0011 | 0.3013 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
scheirer1998/percival2014 | 0.0000 | 0.3366 | 0.0873 | 0.0573 | 0.0000 | 0.0453 | 0.2579 | 0.0000 | 0.0000 | 0.0062 | 1.0000 | 0.0000 | 0.9128 | 0.0463 | 0.0000 | 0.0324 | 0.0000 | 0.0017 | 0.0074 |
schreiber2014/default | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0004 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2017/ismir2017 | 0.0000 | 0.0314 | 0.0042 | 0.0006 | 0.0000 | 0.0064 | 0.2650 | 0.0000 | 0.0000 | 0.0011 | 0.9128 | 0.0000 | 1.0000 | 0.0044 | 0.0000 | 0.0003 | 0.0000 | 0.0000 | 0.0002 |
schreiber2017/mirex2017 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0026 | 0.0000 | 0.0000 | 0.3013 | 0.0463 | 0.0000 | 0.0044 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2018/cnn | 0.0000 | 0.0000 | 0.0006 | 0.0001 | 0.0000 | 0.0005 | 0.0000 | 0.6424 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0004 | 0.7457 | 0.0526 | 0.0258 |
schreiber2018/fcn | 0.0000 | 0.2300 | 0.6574 | 0.8179 | 0.0000 | 0.5907 | 0.0860 | 0.0045 | 0.0000 | 0.0000 | 0.0324 | 0.0000 | 0.0003 | 0.0000 | 0.0004 | 1.0000 | 0.0050 | 0.1092 | 0.6207 |
schreiber2018/ismir2018 | 0.0000 | 0.0001 | 0.0014 | 0.0018 | 0.0000 | 0.0018 | 0.0000 | 0.4080 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.7457 | 0.0050 | 1.0000 | 0.1645 | 0.0341 |
sun2021/default | 0.0000 | 0.0111 | 0.0752 | 0.0322 | 0.0000 | 0.0603 | 0.0032 | 0.0845 | 0.0000 | 0.0000 | 0.0017 | 0.0000 | 0.0000 | 0.0000 | 0.0526 | 0.1092 | 0.1645 | 1.0000 | 0.4676 |
zplane/auftakt_v3 | 0.0000 | 0.0805 | 0.3264 | 0.4812 | 0.0000 | 0.3123 | 0.0163 | 0.0025 | 0.0000 | 0.0000 | 0.0074 | 0.0000 | 0.0002 | 0.0000 | 0.0258 | 0.6207 | 0.0341 | 0.4676 | 1.0000 |
Table 12: Paired t-test p-values, using reference annotations 1.0 as groundtruth with OE1. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.
Estimator | boeck2015/tempodetector2016_default | boeck2019/multi_task | boeck2019/multi_task_hjdb | boeck2020/dar | davies2009/mirex_qm_tempotracker | echonest/version_3_2_1 | gkiokas2012/default | klapuri2006/percival2014 | oliveira2010/ibt | percival2014/stem | scheirer1998/percival2014 | schreiber2014/default | schreiber2017/ismir2017 | schreiber2017/mirex2017 | schreiber2018/cnn | schreiber2018/fcn | schreiber2018/ismir2018 | sun2021/default | zplane/auftakt_v3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
boeck2015/tempodetector2016_default | 1.0000 | 0.9315 | 0.6956 | 0.5957 | 0.0000 | 0.0006 | 0.1088 | 0.8152 | 0.2494 | 0.4725 | 0.0000 | 0.0000 | 0.0129 | 0.7336 | 0.8650 | 0.3635 | 0.0205 | 0.0000 | 0.0000 |
boeck2019/multi_task | 0.9315 | 1.0000 | 0.5629 | 0.5151 | 0.0000 | 0.0007 | 0.1332 | 0.8874 | 0.3180 | 0.3772 | 0.0000 | 0.0000 | 0.0307 | 0.6790 | 0.7758 | 0.3699 | 0.0460 | 0.0000 | 0.0000 |
boeck2019/multi_task_hjdb | 0.6956 | 0.5629 | 1.0000 | 0.3323 | 0.0000 | 0.0023 | 0.3173 | 0.8820 | 0.4520 | 0.2961 | 0.0000 | 0.0000 | 0.0695 | 0.4587 | 0.5392 | 0.6340 | 0.1217 | 0.0000 | 0.0000 |
boeck2020/dar | 0.5957 | 0.5151 | 0.3323 | 1.0000 | 0.0000 | 0.0001 | 0.0315 | 0.4663 | 0.1493 | 0.7277 | 0.0000 | 0.0000 | 0.0026 | 0.7923 | 0.6600 | 0.0763 | 0.0022 | 0.0000 | 0.0000 |
davies2009/mirex_qm_tempotracker | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0848 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
echonest/version_3_2_1 | 0.0006 | 0.0007 | 0.0023 | 0.0001 | 0.0000 | 1.0000 | 0.0142 | 0.0010 | 0.0400 | 0.0001 | 0.0000 | 0.2504 | 0.0863 | 0.0002 | 0.0004 | 0.0039 | 0.0496 | 0.0117 | 0.0604 |
gkiokas2012/default | 0.1088 | 0.1332 | 0.3173 | 0.0315 | 0.0000 | 0.0142 | 1.0000 | 0.2318 | 0.9969 | 0.0134 | 0.0000 | 0.0000 | 0.3207 | 0.0473 | 0.0383 | 0.4655 | 0.5170 | 0.0000 | 0.0000 |
klapuri2006/percival2014 | 0.8152 | 0.8874 | 0.8820 | 0.4663 | 0.0000 | 0.0010 | 0.2318 | 1.0000 | 0.3003 | 0.3771 | 0.0000 | 0.0000 | 0.0423 | 0.6079 | 0.6827 | 0.5557 | 0.1001 | 0.0000 | 0.0000 |
oliveira2010/ibt | 0.2494 | 0.3180 | 0.4520 | 0.1493 | 0.0000 | 0.0400 | 0.9969 | 0.3003 | 1.0000 | 0.1095 | 0.0000 | 0.0003 | 0.4727 | 0.1855 | 0.2286 | 0.6675 | 0.6843 | 0.0000 | 0.0001 |
percival2014/stem | 0.4725 | 0.3772 | 0.2961 | 0.7277 | 0.0000 | 0.0001 | 0.0134 | 0.3771 | 0.1095 | 1.0000 | 0.0000 | 0.0000 | 0.0021 | 0.5542 | 0.5121 | 0.0729 | 0.0020 | 0.0000 | 0.0000 |
scheirer1998/percival2014 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0848 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2014/default | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2504 | 0.0000 | 0.0000 | 0.0003 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0859 | 0.2549 |
schreiber2017/ismir2017 | 0.0129 | 0.0307 | 0.0695 | 0.0026 | 0.0000 | 0.0863 | 0.3207 | 0.0423 | 0.4727 | 0.0021 | 0.0000 | 0.0000 | 1.0000 | 0.0011 | 0.0076 | 0.1227 | 0.6926 | 0.0000 | 0.0001 |
schreiber2017/mirex2017 | 0.7336 | 0.6790 | 0.4587 | 0.7923 | 0.0000 | 0.0002 | 0.0473 | 0.6079 | 0.1855 | 0.5542 | 0.0000 | 0.0000 | 0.0011 | 1.0000 | 0.8536 | 0.1151 | 0.0064 | 0.0000 | 0.0000 |
schreiber2018/cnn | 0.8650 | 0.7758 | 0.5392 | 0.6600 | 0.0000 | 0.0004 | 0.0383 | 0.6827 | 0.2286 | 0.5121 | 0.0000 | 0.0000 | 0.0076 | 0.8536 | 1.0000 | 0.0896 | 0.0112 | 0.0000 | 0.0000 |
schreiber2018/fcn | 0.3635 | 0.3699 | 0.6340 | 0.0763 | 0.0000 | 0.0039 | 0.4655 | 0.5557 | 0.6675 | 0.0729 | 0.0000 | 0.0000 | 0.1227 | 0.1151 | 0.0896 | 1.0000 | 0.1878 | 0.0000 | 0.0000 |
schreiber2018/ismir2018 | 0.0205 | 0.0460 | 0.1217 | 0.0022 | 0.0000 | 0.0496 | 0.5170 | 0.1001 | 0.6843 | 0.0020 | 0.0000 | 0.0000 | 0.6926 | 0.0064 | 0.0112 | 0.1878 | 1.0000 | 0.0000 | 0.0001 |
sun2021/default | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0117 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0859 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.8738 |
zplane/auftakt_v3 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0604 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.2549 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.8738 | 1.0000 |
Table 13: Paired t-test p-values, using reference annotations 2.0 as groundtruth with OE2. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.
Estimator | boeck2015/tempodetector2016_default | boeck2019/multi_task | boeck2019/multi_task_hjdb | boeck2020/dar | davies2009/mirex_qm_tempotracker | echonest/version_3_2_1 | gkiokas2012/default | klapuri2006/percival2014 | oliveira2010/ibt | percival2014/stem | scheirer1998/percival2014 | schreiber2014/default | schreiber2017/ismir2017 | schreiber2017/mirex2017 | schreiber2018/cnn | schreiber2018/fcn | schreiber2018/ismir2018 | sun2021/default | zplane/auftakt_v3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
boeck2015/tempodetector2016_default | 1.0000 | 0.4684 | 0.2678 | 0.3061 | 0.0000 | 0.0955 | 0.0925 | 0.7844 | 0.4103 | 0.7647 | 0.0000 | 0.0000 | 0.0088 | 0.8997 | 0.9845 | 0.2850 | 0.0134 | 0.0000 | 0.0008 |
boeck2019/multi_task | 0.4684 | 1.0000 | 0.4164 | 0.8994 | 0.0000 | 0.0245 | 0.0201 | 0.3981 | 0.2038 | 0.6498 | 0.0000 | 0.0000 | 0.0030 | 0.4887 | 0.3943 | 0.0562 | 0.0041 | 0.0000 | 0.0001 |
boeck2019/multi_task_hjdb | 0.2678 | 0.4164 | 1.0000 | 0.6782 | 0.0000 | 0.0120 | 0.0132 | 0.2353 | 0.1099 | 0.3874 | 0.0000 | 0.0000 | 0.0015 | 0.2814 | 0.2079 | 0.0269 | 0.0018 | 0.0000 | 0.0000 |
boeck2020/dar | 0.3061 | 0.8994 | 0.6782 | 1.0000 | 0.0000 | 0.0236 | 0.0102 | 0.2720 | 0.1669 | 0.4681 | 0.0000 | 0.0000 | 0.0003 | 0.2214 | 0.1960 | 0.0135 | 0.0003 | 0.0000 | 0.0000 |
davies2009/mirex_qm_tempotracker | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0808 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
echonest/version_3_2_1 | 0.0955 | 0.0245 | 0.0120 | 0.0236 | 0.0000 | 1.0000 | 0.6050 | 0.1602 | 0.4190 | 0.0627 | 0.0000 | 0.0096 | 0.9496 | 0.0847 | 0.0942 | 0.3147 | 0.9695 | 0.0008 | 0.1218 |
gkiokas2012/default | 0.0925 | 0.0201 | 0.0132 | 0.0102 | 0.0000 | 0.6050 | 1.0000 | 0.1797 | 0.6699 | 0.0363 | 0.0000 | 0.0000 | 0.4085 | 0.0688 | 0.0635 | 0.4786 | 0.3920 | 0.0000 | 0.0246 |
klapuri2006/percival2014 | 0.7844 | 0.3981 | 0.2353 | 0.2720 | 0.0000 | 0.1602 | 0.1797 | 1.0000 | 0.4953 | 0.6075 | 0.0000 | 0.0000 | 0.0541 | 0.7114 | 0.7863 | 0.5354 | 0.0617 | 0.0000 | 0.0013 |
oliveira2010/ibt | 0.4103 | 0.2038 | 0.1099 | 0.1669 | 0.0000 | 0.4190 | 0.6699 | 0.4953 | 1.0000 | 0.3200 | 0.0000 | 0.0001 | 0.3091 | 0.3850 | 0.4419 | 0.9495 | 0.3551 | 0.0000 | 0.0104 |
percival2014/stem | 0.7647 | 0.6498 | 0.3874 | 0.4681 | 0.0000 | 0.0627 | 0.0363 | 0.6075 | 0.3200 | 1.0000 | 0.0000 | 0.0000 | 0.0058 | 0.7999 | 0.6924 | 0.1094 | 0.0023 | 0.0000 | 0.0001 |
scheirer1998/percival2014 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0808 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2014/default | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0096 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 1.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0002 | 0.4677 | 0.3381 |
schreiber2017/ismir2017 | 0.0088 | 0.0030 | 0.0015 | 0.0003 | 0.0000 | 0.9496 | 0.4085 | 0.0541 | 0.3091 | 0.0058 | 0.0000 | 0.0001 | 1.0000 | 0.0011 | 0.0076 | 0.1227 | 0.8864 | 0.0000 | 0.0667 |
schreiber2017/mirex2017 | 0.8997 | 0.4887 | 0.2814 | 0.2214 | 0.0000 | 0.0847 | 0.0688 | 0.7114 | 0.3850 | 0.7999 | 0.0000 | 0.0000 | 0.0011 | 1.0000 | 0.8536 | 0.1151 | 0.0077 | 0.0000 | 0.0004 |
schreiber2018/cnn | 0.9845 | 0.3943 | 0.2079 | 0.1960 | 0.0000 | 0.0942 | 0.0635 | 0.7863 | 0.4419 | 0.6924 | 0.0000 | 0.0000 | 0.0076 | 0.8536 | 1.0000 | 0.0896 | 0.0079 | 0.0000 | 0.0005 |
schreiber2018/fcn | 0.2850 | 0.0562 | 0.0269 | 0.0135 | 0.0000 | 0.3147 | 0.4786 | 0.5354 | 0.9495 | 0.1094 | 0.0000 | 0.0000 | 0.1227 | 0.1151 | 0.0896 | 1.0000 | 0.1333 | 0.0000 | 0.0052 |
schreiber2018/ismir2018 | 0.0134 | 0.0041 | 0.0018 | 0.0003 | 0.0000 | 0.9695 | 0.3920 | 0.0617 | 0.3551 | 0.0023 | 0.0000 | 0.0002 | 0.8864 | 0.0077 | 0.0079 | 0.1333 | 1.0000 | 0.0000 | 0.0696 |
sun2021/default | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0008 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.4677 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.1541 |
zplane/auftakt_v3 | 0.0008 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.1218 | 0.0246 | 0.0013 | 0.0104 | 0.0001 | 0.0000 | 0.3381 | 0.0667 | 0.0004 | 0.0005 | 0.0052 | 0.0696 | 0.1541 | 1.0000 |
Table 14: Paired t-test p-values, using reference annotations 1.0 as groundtruth with OE2. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.
OE1 on Tempo-Subsets
How well does an estimator perform, when only taking a subset of the reference annotations into account? The graphs show mean OE1 for reference subsets with tempi in [T-10,T+10] BPM. Note that the graphs do not show confidence intervals and that some values may be based on very few estimates.
OE1 on Tempo-Subsets for 1.0
Figure 19: Mean OE1 for estimates compared to version 1.0 for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
OE1 on Tempo-Subsets for 2.0
Figure 20: Mean OE1 for estimates compared to version 2.0 for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
OE2 on Tempo-Subsets
How well does an estimator perform, when only taking a subset of the reference annotations into account? The graphs show mean OE2 for reference subsets with tempi in [T-10,T+10] BPM. Note that the graphs do not show confidence intervals and that some values may be based on very few estimates.
OE2 on Tempo-Subsets for 1.0
Figure 21: Mean OE2 for estimates compared to version 1.0 for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
OE2 on Tempo-Subsets for 2.0
Figure 22: Mean OE2 for estimates compared to version 2.0 for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated OE1 for Tempo
When fitting a generalized additive model (GAM) to OE1-values and a ground truth, what OE1 can we expect with confidence?
Estimated OE1 for Tempo for 1.0
Predictions of GAMs trained on OE1 for estimates for reference 1.0.
Figure 23: OE1 predictions of a generalized additive model (GAM) fit to OE1 results for 1.0. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated OE1 for Tempo for 2.0
Predictions of GAMs trained on OE1 for estimates for reference 2.0.
Figure 24: OE1 predictions of a generalized additive model (GAM) fit to OE1 results for 2.0. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated OE2 for Tempo
When fitting a generalized additive model (GAM) to OE2-values and a ground truth, what OE2 can we expect with confidence?
Estimated OE2 for Tempo for 1.0
Predictions of GAMs trained on OE2 for estimates for reference 1.0.
Figure 25: OE2 predictions of a generalized additive model (GAM) fit to OE2 results for 1.0. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated OE2 for Tempo for 2.0
Predictions of GAMs trained on OE2 for estimates for reference 2.0.
Figure 26: OE2 predictions of a generalized additive model (GAM) fit to OE2 results for 2.0. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
AOE1 and AOE2
AOE1 is defined as absolute octave error between an estimate and a reference value: AOE1(E) = |log2(E/R)|
.
AOE2 is the minimum of AOE1 allowing the octave errors 2, 3, 1/2, and 1/3: AOE2(E) = min(AOE1(E), AOE1(2E), AOE1(3E), AOE1(½E), AOE1(⅓E))
.
Mean AOE1/AOE2 Results for 1.0
Estimator | AOE1_MEAN | AOE1_STDEV | AOE2_MEAN | AOE2_STDEV |
---|---|---|---|---|
schreiber2017/mirex2017 | 0.1109 | 0.2871 | 0.0262 | 0.0650 |
boeck2020/dar | 0.1758 | 0.3735 | 0.0264 | 0.0631 |
schreiber2018/cnn | 0.1862 | 0.3721 | 0.0271 | 0.0679 |
sun2021/default | 0.1870 | 0.3605 | 0.0379 | 0.0812 |
schreiber2018/fcn | 0.1882 | 0.3763 | 0.0290 | 0.0718 |
schreiber2017/ismir2017 | 0.1949 | 0.3772 | 0.0322 | 0.0801 |
schreiber2018/ismir2018 | 0.2357 | 0.4145 | 0.0307 | 0.0770 |
schreiber2014/default | 0.2415 | 0.3990 | 0.0366 | 0.0897 |
echonest/version_3_2_1 | 0.2461 | 0.4057 | 0.0427 | 0.0957 |
boeck2019/multi_task | 0.2569 | 0.4227 | 0.0304 | 0.0733 |
boeck2019/multi_task_hjdb | 0.2643 | 0.4273 | 0.0313 | 0.0757 |
percival2014/stem | 0.2764 | 0.4300 | 0.0285 | 0.0697 |
boeck2015/tempodetector2016_default | 0.2859 | 0.4606 | 0.0310 | 0.0701 |
gkiokas2012/default | 0.2877 | 0.4407 | 0.0309 | 0.0775 |
zplane/auftakt_v3 | 0.2922 | 0.4349 | 0.0424 | 0.0980 |
klapuri2006/percival2014 | 0.3268 | 0.4642 | 0.0329 | 0.0773 |
davies2009/mirex_qm_tempotracker | 0.3488 | 0.4793 | 0.0440 | 0.0831 |
scheirer1998/percival2014 | 0.3613 | 0.4461 | 0.0804 | 0.1403 |
oliveira2010/ibt | 0.3671 | 0.4712 | 0.0424 | 0.0890 |
Table 15: Mean AOE1/AOE2 for estimates compared to version 1.0 ordered by mean.
Raw data AOE1: CSV JSON LATEX PICKLE
Raw data AOE2: CSV JSON LATEX PICKLE
AOE1 distribution for 1.0
Figure 27: AOE1 for estimates compared to version 1.0. Shown are the mean AOE1 and an empirical distribution of the sample, using kernel density estimation (KDE).
CSV JSON LATEX PICKLE SVG PDF PNG
AOE2 distribution for 1.0
Figure 28: AOE2 for estimates compared to version 1.0. Shown are the mean AOE2 and an empirical distribution of the sample, using kernel density estimation (KDE).
CSV JSON LATEX PICKLE SVG PDF PNG
Mean AOE1/AOE2 Results for 2.0
Estimator | AOE1_MEAN | AOE1_STDEV | AOE2_MEAN | AOE2_STDEV |
---|---|---|---|---|
schreiber2017/mirex2017 | 0.0957 | 0.2826 | 0.0128 | 0.0365 |
boeck2020/dar | 0.1640 | 0.3740 | 0.0131 | 0.0347 |
schreiber2018/cnn | 0.1727 | 0.3734 | 0.0136 | 0.0422 |
schreiber2018/fcn | 0.1748 | 0.3764 | 0.0159 | 0.0497 |
sun2021/default | 0.1750 | 0.3618 | 0.0252 | 0.0642 |
schreiber2017/ismir2017 | 0.1808 | 0.3780 | 0.0188 | 0.0607 |
schreiber2018/ismir2018 | 0.2221 | 0.4151 | 0.0175 | 0.0570 |
schreiber2014/default | 0.2275 | 0.4015 | 0.0233 | 0.0740 |
echonest/version_3_2_1 | 0.2342 | 0.4087 | 0.0302 | 0.0832 |
boeck2019/multi_task | 0.2450 | 0.4251 | 0.0176 | 0.0535 |
boeck2019/multi_task_hjdb | 0.2523 | 0.4295 | 0.0191 | 0.0588 |
percival2014/stem | 0.2623 | 0.4313 | 0.0158 | 0.0486 |
gkiokas2012/default | 0.2745 | 0.4411 | 0.0170 | 0.0560 |
boeck2015/tempodetector2016_default | 0.2746 | 0.4631 | 0.0176 | 0.0457 |
zplane/auftakt_v3 | 0.2801 | 0.4318 | 0.0311 | 0.0886 |
klapuri2006/percival2014 | 0.3141 | 0.4651 | 0.0188 | 0.0552 |
davies2009/mirex_qm_tempotracker | 0.3384 | 0.4789 | 0.0325 | 0.0676 |
scheirer1998/percival2014 | 0.3552 | 0.4488 | 0.0708 | 0.1375 |
oliveira2010/ibt | 0.3562 | 0.4717 | 0.0307 | 0.0759 |
Table 16: Mean AOE1/AOE2 for estimates compared to version 2.0 ordered by mean.
Raw data AOE1: CSV JSON LATEX PICKLE
Raw data AOE2: CSV JSON LATEX PICKLE
AOE1 distribution for 2.0
Figure 29: AOE1 for estimates compared to version 2.0. Shown are the mean AOE1 and an empirical distribution of the sample, using kernel density estimation (KDE).
CSV JSON LATEX PICKLE SVG PDF PNG
AOE2 distribution for 2.0
Figure 30: AOE2 for estimates compared to version 2.0. Shown are the mean AOE2 and an empirical distribution of the sample, using kernel density estimation (KDE).
CSV JSON LATEX PICKLE SVG PDF PNG
Significance of Differences
Estimator | boeck2015/tempodetector2016_default | boeck2019/multi_task | boeck2019/multi_task_hjdb | boeck2020/dar | davies2009/mirex_qm_tempotracker | echonest/version_3_2_1 | gkiokas2012/default | klapuri2006/percival2014 | oliveira2010/ibt | percival2014/stem | scheirer1998/percival2014 | schreiber2014/default | schreiber2017/ismir2017 | schreiber2017/mirex2017 | schreiber2018/cnn | schreiber2018/fcn | schreiber2018/ismir2018 | sun2021/default | zplane/auftakt_v3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
boeck2015/tempodetector2016_default | 1.0000 | 0.0161 | 0.0688 | 0.0000 | 0.0000 | 0.0022 | 0.9949 | 0.0035 | 0.0000 | 0.3908 | 0.0000 | 0.0008 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.6914 |
boeck2019/multi_task | 0.0161 | 1.0000 | 0.1903 | 0.0000 | 0.0000 | 0.3717 | 0.0260 | 0.0000 | 0.0000 | 0.1168 | 0.0000 | 0.0980 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0359 | 0.0000 | 0.0025 |
boeck2019/multi_task_hjdb | 0.0688 | 0.1903 | 1.0000 | 0.0000 | 0.0000 | 0.1451 | 0.0941 | 0.0000 | 0.0000 | 0.3994 | 0.0000 | 0.0281 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0063 | 0.0000 | 0.0188 |
boeck2020/dar | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0954 | 0.0000 | 0.3469 | 0.2855 | 0.0000 | 0.1860 | 0.0000 |
davies2009/mirex_qm_tempotracker | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0127 | 0.0552 | 0.0000 | 0.3032 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
echonest/version_3_2_1 | 0.0022 | 0.3717 | 0.1451 | 0.0000 | 0.0000 | 1.0000 | 0.0015 | 0.0000 | 0.0000 | 0.0222 | 0.0000 | 0.5738 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2949 | 0.0000 | 0.0003 |
gkiokas2012/default | 0.9949 | 0.0260 | 0.0941 | 0.0000 | 0.0000 | 0.0015 | 1.0000 | 0.0017 | 0.0000 | 0.2922 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.6477 |
klapuri2006/percival2014 | 0.0035 | 0.0000 | 0.0000 | 0.0000 | 0.0127 | 0.0000 | 0.0017 | 1.0000 | 0.0000 | 0.0000 | 0.0018 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0016 |
oliveira2010/ibt | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0552 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.8445 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
percival2014/stem | 0.3908 | 0.1168 | 0.3994 | 0.0000 | 0.0000 | 0.0222 | 0.2922 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0002 | 0.0000 | 0.1000 |
scheirer1998/percival2014 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.3032 | 0.0000 | 0.0000 | 0.0018 | 0.8445 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2014/default | 0.0008 | 0.0980 | 0.0281 | 0.0000 | 0.0000 | 0.5738 | 0.0001 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.6058 | 0.0000 | 0.0000 |
schreiber2017/ismir2017 | 0.0000 | 0.0000 | 0.0000 | 0.0954 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.4215 | 0.5511 | 0.0001 | 0.5775 | 0.0000 |
schreiber2017/mirex2017 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2018/cnn | 0.0000 | 0.0000 | 0.0000 | 0.3469 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.4215 | 0.0000 | 1.0000 | 0.8258 | 0.0000 | 0.7965 | 0.0000 |
schreiber2018/fcn | 0.0000 | 0.0000 | 0.0000 | 0.2855 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.5511 | 0.0000 | 0.8258 | 1.0000 | 0.0000 | 0.9785 | 0.0000 |
schreiber2018/ismir2018 | 0.0000 | 0.0359 | 0.0063 | 0.0000 | 0.0000 | 0.2949 | 0.0000 | 0.0000 | 0.0000 | 0.0002 | 0.0000 | 0.6058 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 |
sun2021/default | 0.0000 | 0.0000 | 0.0000 | 0.1860 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.5775 | 0.0000 | 0.7965 | 0.9785 | 0.0000 | 1.0000 | 0.0000 |
zplane/auftakt_v3 | 0.6914 | 0.0025 | 0.0188 | 0.0000 | 0.0000 | 0.0003 | 0.6477 | 0.0016 | 0.0000 | 0.1000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 |
Table 17: Paired t-test p-values, using reference annotations 2.0 as groundtruth with AOE1. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.
Estimator | boeck2015/tempodetector2016_default | boeck2019/multi_task | boeck2019/multi_task_hjdb | boeck2020/dar | davies2009/mirex_qm_tempotracker | echonest/version_3_2_1 | gkiokas2012/default | klapuri2006/percival2014 | oliveira2010/ibt | percival2014/stem | scheirer1998/percival2014 | schreiber2014/default | schreiber2017/ismir2017 | schreiber2017/mirex2017 | schreiber2018/cnn | schreiber2018/fcn | schreiber2018/ismir2018 | sun2021/default | zplane/auftakt_v3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
boeck2015/tempodetector2016_default | 1.0000 | 0.0164 | 0.0738 | 0.0000 | 0.0000 | 0.0022 | 0.8944 | 0.0022 | 0.0000 | 0.5050 | 0.0000 | 0.0014 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.6397 |
boeck2019/multi_task | 0.0164 | 1.0000 | 0.1764 | 0.0000 | 0.0000 | 0.3636 | 0.0179 | 0.0000 | 0.0000 | 0.0723 | 0.0000 | 0.1407 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0497 | 0.0000 | 0.0019 |
boeck2019/multi_task_hjdb | 0.0738 | 0.1764 | 1.0000 | 0.0000 | 0.0000 | 0.1351 | 0.0728 | 0.0000 | 0.0000 | 0.3027 | 0.0000 | 0.0410 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0088 | 0.0000 | 0.0167 |
boeck2020/dar | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0555 | 0.0000 | 0.2548 | 0.2104 | 0.0000 | 0.1759 | 0.0000 |
davies2009/mirex_qm_tempotracker | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0221 | 0.0469 | 0.0000 | 0.4824 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
echonest/version_3_2_1 | 0.0022 | 0.3636 | 0.1351 | 0.0000 | 0.0000 | 1.0000 | 0.0008 | 0.0000 | 0.0000 | 0.0122 | 0.0000 | 0.6968 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.3647 | 0.0000 | 0.0002 |
gkiokas2012/default | 0.8944 | 0.0179 | 0.0728 | 0.0000 | 0.0000 | 0.0008 | 1.0000 | 0.0017 | 0.0000 | 0.3238 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.7065 |
klapuri2006/percival2014 | 0.0022 | 0.0000 | 0.0000 | 0.0000 | 0.0221 | 0.0000 | 0.0017 | 1.0000 | 0.0000 | 0.0000 | 0.0084 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0012 |
oliveira2010/ibt | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0469 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.5590 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
percival2014/stem | 0.5050 | 0.0723 | 0.3027 | 0.0000 | 0.0000 | 0.0122 | 0.3238 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0002 | 0.0000 | 0.1391 |
scheirer1998/percival2014 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.4824 | 0.0000 | 0.0000 | 0.0084 | 0.5590 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2014/default | 0.0014 | 0.1407 | 0.0410 | 0.0000 | 0.0000 | 0.6968 | 0.0001 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.5818 | 0.0000 | 0.0000 |
schreiber2017/ismir2017 | 0.0000 | 0.0000 | 0.0000 | 0.0555 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.3870 | 0.5129 | 0.0001 | 0.4431 | 0.0000 |
schreiber2017/mirex2017 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2018/cnn | 0.0000 | 0.0000 | 0.0000 | 0.2548 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.3870 | 0.0000 | 1.0000 | 0.8220 | 0.0000 | 0.9280 | 0.0000 |
schreiber2018/fcn | 0.0000 | 0.0000 | 0.0000 | 0.2104 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.5129 | 0.0000 | 0.8220 | 1.0000 | 0.0000 | 0.8928 | 0.0000 |
schreiber2018/ismir2018 | 0.0000 | 0.0497 | 0.0088 | 0.0000 | 0.0000 | 0.3647 | 0.0000 | 0.0000 | 0.0000 | 0.0002 | 0.0000 | 0.5818 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 |
sun2021/default | 0.0000 | 0.0000 | 0.0000 | 0.1759 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.4431 | 0.0000 | 0.9280 | 0.8928 | 0.0000 | 1.0000 | 0.0000 |
zplane/auftakt_v3 | 0.6397 | 0.0019 | 0.0167 | 0.0000 | 0.0000 | 0.0002 | 0.7065 | 0.0012 | 0.0000 | 0.1391 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 |
Table 18: Paired t-test p-values, using reference annotations 1.0 as groundtruth with AOE1. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.
Estimator | boeck2015/tempodetector2016_default | boeck2019/multi_task | boeck2019/multi_task_hjdb | boeck2020/dar | davies2009/mirex_qm_tempotracker | echonest/version_3_2_1 | gkiokas2012/default | klapuri2006/percival2014 | oliveira2010/ibt | percival2014/stem | scheirer1998/percival2014 | schreiber2014/default | schreiber2017/ismir2017 | schreiber2017/mirex2017 | schreiber2018/cnn | schreiber2018/fcn | schreiber2018/ismir2018 | sun2021/default | zplane/auftakt_v3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
boeck2015/tempodetector2016_default | 1.0000 | 0.9937 | 0.4098 | 0.0007 | 0.0000 | 0.0000 | 0.6997 | 0.4706 | 0.0000 | 0.2819 | 0.0000 | 0.0039 | 0.4474 | 0.0003 | 0.0070 | 0.2751 | 0.9416 | 0.0000 | 0.0000 |
boeck2019/multi_task | 0.9937 | 1.0000 | 0.1345 | 0.0007 | 0.0000 | 0.0000 | 0.6958 | 0.5093 | 0.0000 | 0.2413 | 0.0000 | 0.0025 | 0.5087 | 0.0009 | 0.0041 | 0.2364 | 0.9427 | 0.0000 | 0.0000 |
boeck2019/multi_task_hjdb | 0.4098 | 0.1345 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2482 | 0.9069 | 0.0000 | 0.0559 | 0.0000 | 0.0295 | 0.8942 | 0.0000 | 0.0004 | 0.0486 | 0.3775 | 0.0010 | 0.0000 |
boeck2020/dar | 0.0007 | 0.0007 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0076 | 0.0002 | 0.0000 | 0.0141 | 0.0000 | 0.0000 | 0.0002 | 0.7345 | 0.6108 | 0.0184 | 0.0011 | 0.0000 | 0.0000 |
davies2009/mirex_qm_tempotracker | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.3969 | 0.0000 | 0.0000 | 0.4393 | 0.0000 | 0.0000 | 0.0002 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0018 | 0.6000 |
echonest/version_3_2_1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.3969 | 1.0000 | 0.0000 | 0.0000 | 0.8334 | 0.0000 | 0.0000 | 0.0004 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0084 | 0.7325 |
gkiokas2012/default | 0.6997 | 0.6958 | 0.2482 | 0.0076 | 0.0000 | 0.0000 | 1.0000 | 0.2831 | 0.0000 | 0.4208 | 0.0000 | 0.0003 | 0.2681 | 0.0050 | 0.0110 | 0.4177 | 0.7234 | 0.0000 | 0.0000 |
klapuri2006/percival2014 | 0.4706 | 0.5093 | 0.9069 | 0.0002 | 0.0000 | 0.0000 | 0.2831 | 1.0000 | 0.0000 | 0.0667 | 0.0000 | 0.0176 | 0.9914 | 0.0001 | 0.0007 | 0.0791 | 0.4415 | 0.0001 | 0.0000 |
oliveira2010/ibt | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.4393 | 0.8334 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0002 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0057 | 0.8778 |
percival2014/stem | 0.2819 | 0.2413 | 0.0559 | 0.0141 | 0.0000 | 0.0000 | 0.4208 | 0.0667 | 0.0000 | 1.0000 | 0.0000 | 0.0001 | 0.0840 | 0.0140 | 0.0762 | 0.9914 | 0.2265 | 0.0000 | 0.0000 |
scheirer1998/percival2014 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2014/default | 0.0039 | 0.0025 | 0.0295 | 0.0000 | 0.0002 | 0.0004 | 0.0003 | 0.0176 | 0.0002 | 0.0001 | 0.0000 | 1.0000 | 0.0009 | 0.0000 | 0.0000 | 0.0000 | 0.0009 | 0.2286 | 0.0001 |
schreiber2017/ismir2017 | 0.4474 | 0.5087 | 0.8942 | 0.0002 | 0.0000 | 0.0000 | 0.2681 | 0.9914 | 0.0000 | 0.0840 | 0.0000 | 0.0009 | 1.0000 | 0.0000 | 0.0005 | 0.0555 | 0.3866 | 0.0000 | 0.0000 |
schreiber2017/mirex2017 | 0.0003 | 0.0009 | 0.0000 | 0.7345 | 0.0000 | 0.0000 | 0.0050 | 0.0001 | 0.0000 | 0.0140 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.4675 | 0.0120 | 0.0007 | 0.0000 | 0.0000 |
schreiber2018/cnn | 0.0070 | 0.0041 | 0.0004 | 0.6108 | 0.0000 | 0.0000 | 0.0110 | 0.0007 | 0.0000 | 0.0762 | 0.0000 | 0.0000 | 0.0005 | 0.4675 | 1.0000 | 0.0254 | 0.0036 | 0.0000 | 0.0000 |
schreiber2018/fcn | 0.2751 | 0.2364 | 0.0486 | 0.0184 | 0.0000 | 0.0000 | 0.4177 | 0.0791 | 0.0000 | 0.9914 | 0.0000 | 0.0000 | 0.0555 | 0.0120 | 0.0254 | 1.0000 | 0.2300 | 0.0000 | 0.0000 |
schreiber2018/ismir2018 | 0.9416 | 0.9427 | 0.3775 | 0.0011 | 0.0000 | 0.0000 | 0.7234 | 0.4415 | 0.0000 | 0.2265 | 0.0000 | 0.0009 | 0.3866 | 0.0007 | 0.0036 | 0.2300 | 1.0000 | 0.0000 | 0.0000 |
sun2021/default | 0.0000 | 0.0000 | 0.0010 | 0.0000 | 0.0018 | 0.0084 | 0.0000 | 0.0001 | 0.0057 | 0.0000 | 0.0000 | 0.2286 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0065 |
zplane/auftakt_v3 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.6000 | 0.7325 | 0.0000 | 0.0000 | 0.8778 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0065 | 1.0000 |
Table 19: Paired t-test p-values, using reference annotations 2.0 as groundtruth with AOE2. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.
Estimator | boeck2015/tempodetector2016_default | boeck2019/multi_task | boeck2019/multi_task_hjdb | boeck2020/dar | davies2009/mirex_qm_tempotracker | echonest/version_3_2_1 | gkiokas2012/default | klapuri2006/percival2014 | oliveira2010/ibt | percival2014/stem | scheirer1998/percival2014 | schreiber2014/default | schreiber2017/ismir2017 | schreiber2017/mirex2017 | schreiber2018/cnn | schreiber2018/fcn | schreiber2018/ismir2018 | sun2021/default | zplane/auftakt_v3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
boeck2015/tempodetector2016_default | 1.0000 | 0.7217 | 0.8502 | 0.0005 | 0.0000 | 0.0000 | 0.9722 | 0.2553 | 0.0000 | 0.1165 | 0.0000 | 0.0036 | 0.4346 | 0.0003 | 0.0078 | 0.2086 | 0.8692 | 0.0001 | 0.0000 |
boeck2019/multi_task | 0.7217 | 1.0000 | 0.3124 | 0.0015 | 0.0000 | 0.0000 | 0.7346 | 0.1657 | 0.0000 | 0.1754 | 0.0000 | 0.0007 | 0.3079 | 0.0029 | 0.0125 | 0.3208 | 0.8276 | 0.0000 | 0.0000 |
boeck2019/multi_task_hjdb | 0.8502 | 0.3124 | 1.0000 | 0.0002 | 0.0000 | 0.0000 | 0.8277 | 0.3860 | 0.0000 | 0.0806 | 0.0000 | 0.0050 | 0.5966 | 0.0004 | 0.0032 | 0.1288 | 0.7470 | 0.0002 | 0.0000 |
boeck2020/dar | 0.0005 | 0.0015 | 0.0002 | 1.0000 | 0.0000 | 0.0000 | 0.0020 | 0.0000 | 0.0000 | 0.0631 | 0.0000 | 0.0000 | 0.0001 | 0.8028 | 0.4661 | 0.0205 | 0.0011 | 0.0000 | 0.0000 |
davies2009/mirex_qm_tempotracker | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.6022 | 0.0000 | 0.0000 | 0.4540 | 0.0000 | 0.0000 | 0.0029 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0077 | 0.5309 |
echonest/version_3_2_1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.6022 | 1.0000 | 0.0000 | 0.0000 | 0.8885 | 0.0000 | 0.0000 | 0.0013 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0094 | 0.8916 |
gkiokas2012/default | 0.9722 | 0.7346 | 0.8277 | 0.0020 | 0.0000 | 0.0000 | 1.0000 | 0.2317 | 0.0000 | 0.0898 | 0.0000 | 0.0008 | 0.4282 | 0.0019 | 0.0052 | 0.1812 | 0.8990 | 0.0000 | 0.0000 |
klapuri2006/percival2014 | 0.2553 | 0.1657 | 0.3860 | 0.0000 | 0.0000 | 0.0000 | 0.2317 | 1.0000 | 0.0000 | 0.0053 | 0.0000 | 0.0511 | 0.6883 | 0.0000 | 0.0001 | 0.0198 | 0.2004 | 0.0026 | 0.0000 |
oliveira2010/ibt | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.4540 | 0.8885 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0043 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0218 | 1.0000 |
percival2014/stem | 0.1165 | 0.1754 | 0.0806 | 0.0631 | 0.0000 | 0.0000 | 0.0898 | 0.0053 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0266 | 0.0608 | 0.2647 | 0.6959 | 0.0907 | 0.0000 | 0.0000 |
scheirer1998/percival2014 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2014/default | 0.0036 | 0.0007 | 0.0050 | 0.0000 | 0.0029 | 0.0013 | 0.0008 | 0.0511 | 0.0043 | 0.0000 | 0.0000 | 1.0000 | 0.0007 | 0.0000 | 0.0000 | 0.0000 | 0.0004 | 0.4260 | 0.0031 |
schreiber2017/ismir2017 | 0.4346 | 0.3079 | 0.5966 | 0.0001 | 0.0000 | 0.0000 | 0.4282 | 0.6883 | 0.0000 | 0.0266 | 0.0000 | 0.0007 | 1.0000 | 0.0000 | 0.0006 | 0.0335 | 0.3211 | 0.0003 | 0.0000 |
schreiber2017/mirex2017 | 0.0003 | 0.0029 | 0.0004 | 0.8028 | 0.0000 | 0.0000 | 0.0019 | 0.0000 | 0.0000 | 0.0608 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.4118 | 0.0190 | 0.0008 | 0.0000 | 0.0000 |
schreiber2018/cnn | 0.0078 | 0.0125 | 0.0032 | 0.4661 | 0.0000 | 0.0000 | 0.0052 | 0.0001 | 0.0000 | 0.2647 | 0.0000 | 0.0000 | 0.0006 | 0.4118 | 1.0000 | 0.0605 | 0.0051 | 0.0000 | 0.0000 |
schreiber2018/fcn | 0.2086 | 0.3208 | 0.1288 | 0.0205 | 0.0000 | 0.0000 | 0.1812 | 0.0198 | 0.0000 | 0.6959 | 0.0000 | 0.0000 | 0.0335 | 0.0190 | 0.0605 | 1.0000 | 0.1904 | 0.0000 | 0.0000 |
schreiber2018/ismir2018 | 0.8692 | 0.8276 | 0.7470 | 0.0011 | 0.0000 | 0.0000 | 0.8990 | 0.2004 | 0.0000 | 0.0907 | 0.0000 | 0.0004 | 0.3211 | 0.0008 | 0.0051 | 0.1904 | 1.0000 | 0.0000 | 0.0000 |
sun2021/default | 0.0001 | 0.0000 | 0.0002 | 0.0000 | 0.0077 | 0.0094 | 0.0000 | 0.0026 | 0.0218 | 0.0000 | 0.0000 | 0.4260 | 0.0003 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0267 |
zplane/auftakt_v3 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.5309 | 0.8916 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0031 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0267 | 1.0000 |
Table 20: Paired t-test p-values, using reference annotations 1.0 as groundtruth with AOE2. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.
AOE1 on Tempo-Subsets
How well does an estimator perform, when only taking a subset of the reference annotations into account? The graphs show mean AOE1 for reference subsets with tempi in [T-10,T+10] BPM. Note that the graphs do not show confidence intervals and that some values may be based on very few estimates.
AOE1 on Tempo-Subsets for 1.0
Figure 31: Mean AOE1 for estimates compared to version 1.0 for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
AOE1 on Tempo-Subsets for 2.0
Figure 32: Mean AOE1 for estimates compared to version 2.0 for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
AOE2 on Tempo-Subsets
How well does an estimator perform, when only taking a subset of the reference annotations into account? The graphs show mean AOE2 for reference subsets with tempi in [T-10,T+10] BPM. Note that the graphs do not show confidence intervals and that some values may be based on very few estimates.
AOE2 on Tempo-Subsets for 1.0
Figure 33: Mean AOE2 for estimates compared to version 1.0 for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
AOE2 on Tempo-Subsets for 2.0
Figure 34: Mean AOE2 for estimates compared to version 2.0 for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated AOE1 for Tempo
When fitting a generalized additive model (GAM) to AOE1-values and a ground truth, what AOE1 can we expect with confidence?
Estimated AOE1 for Tempo for 1.0
Predictions of GAMs trained on AOE1 for estimates for reference 1.0.
Figure 35: AOE1 predictions of a generalized additive model (GAM) fit to AOE1 results for 1.0. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated AOE1 for Tempo for 2.0
Predictions of GAMs trained on AOE1 for estimates for reference 2.0.
Figure 36: AOE1 predictions of a generalized additive model (GAM) fit to AOE1 results for 2.0. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated AOE2 for Tempo
When fitting a generalized additive model (GAM) to AOE2-values and a ground truth, what AOE2 can we expect with confidence?
Estimated AOE2 for Tempo for 1.0
Predictions of GAMs trained on AOE2 for estimates for reference 1.0.
Figure 37: AOE2 predictions of a generalized additive model (GAM) fit to AOE2 results for 1.0. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated AOE2 for Tempo for 2.0
Predictions of GAMs trained on AOE2 for estimates for reference 2.0.
Figure 38: AOE2 predictions of a generalized additive model (GAM) fit to AOE2 results for 2.0. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
Generated by tempo_eval 0.1.1 on 2022-06-29 18:07. Size L.