Skip to the content.

smc_mirex

This is the tempo_eval report for the ‘smc_mirex’ corpus.

Reports for other corpora may be found here.

Table of Contents

References for ‘smc_mirex’

References

1.0

Attribute Value
Corpus SMC_MIREX
Version 1.0
Curator Matthew Davies
Data Source manual annotation
Annotation Tools derived from beat annotations
Annotation Rules median of inter beat intervals
Annotator, bibtex Holzapfel2012
Annotator, ref_url https://repositorio.inesctec.pt/bitstream/123456789/2539/1/PS-07771.pdf

2.0

Attribute Value
Corpus SMC_MIREX
Version 2.0
Curator Graham Percival
Data Source manual annotation
Annotation Tools derived from beat annotations
Annotation Rules unknown
Annotator, bibtex Percival2014
Annotator, ref_url http://www.marsyas.info/tempo/

Basic Statistics

Reference Size Min Max Avg Stdev Sweet Oct. Start Sweet Oct. Coverage
1.0 217 32.71 206.90 78.02 31.89 51.00 0.69
2.0 217 32.71 206.90 78.01 31.89 51.00 0.69

Table 1: Basic statistics.

CSV JSON LATEX PICKLE

Smoothed Tempo Distribution

Figure 1: Percentage of values in tempo interval.

CSV JSON LATEX PICKLE SVG PDF PNG

Tag Distribution for ‘tag_open’

Figure 2: Percentage of tracks tagged with tags from namespace ‘tag_open’. Annotations are from reference 1.0.

CSV JSON LATEX PICKLE SVG PDF PNG

Beat-Based Tempo Variation

Figure 3: Fraction of the dataset with beat-annotated tracks with cvar < τ.

CSV JSON LATEX PICKLE SVG PDF PNG

Estimates for ‘smc_mirex’

Estimators

boeck2015/tempodetector2016_default

Attribute Value
Corpus smc_mirex
Version 0.17.dev0
Annotation Tools TempoDetector.2016, madmom, https://github.com/CPJKU/madmom
Annotator, bibtex Boeck2015

boeck2019/multi_task

Attribute Value
Corpus smc_mirex
Version 0.0.1
Annotation Tools model=multi_task, https://github.com/superbock/ISMIR2019
Annotator, bibtex Boeck2019

boeck2019/multi_task_hjdb

Attribute Value
Corpus smc_mirex
Version 0.0.1
Annotation Tools model=multi_task_hjdb, https://github.com/superbock/ISMIR2019
Annotator, bibtex Boeck2019

boeck2020/dar

Attribute Value
Corpus smc_mirex
Version 0.0.1
Annotation Tools https://github.com/superbock/ISMIR2020
Annotator, bibtex Boeck2020

davies2009/mirex_qm_tempotracker

Attribute Value  
Corpus smc_mirex  
Version 1.0  
Annotation Tools QM Tempotracker, Sonic Annotator plugin. https://code.soundsoftware.ac.uk/projects/mirex2013/repository/show/audio_tempo_estimation/qm-tempotracker Note that the current macOS build of ‘qm-vamp-plugins’ was used.  
Annotator, bibtex Davies2009 Davies2007

percival2014/stem

Attribute Value
Corpus smc_mirex
Version 1.0
Annotation Tools percival 2014, ‘tempo’ implementation from Marsyas, http://marsyas.info, git checkout tempo-stem
Annotator, bibtex Percival2014

schreiber2014/default

Attribute Value
Corpus smc_mirex
Version 0.0.1
Annotation Tools schreiber 2014, http://www.tagtraum.com/tempo_estimation.html
Annotator, bibtex Schreiber2014

schreiber2017/ismir2017

Attribute Value
Corpus smc_mirex
Version 0.0.4
Annotation Tools schreiber 2017, model=ismir2017, http://www.tagtraum.com/tempo_estimation.html
Annotator, bibtex Schreiber2017

schreiber2017/mirex2017

Attribute Value
Corpus smc_mirex
Version 0.0.4
Annotation Tools schreiber 2017, model=mirex2017, http://www.tagtraum.com/tempo_estimation.html
Annotator, bibtex Schreiber2017

schreiber2018/cnn

Attribute Value
Corpus smc_mirex
Version 0.0.2
Data Source Hendrik Schreiber, Meinard Müller. A Single-Step Approach to Musical Tempo Estimation Using a Convolutional Neural Network. In Proceedings of the 19th International Society for Music Information Retrieval Conference (ISMIR), Paris, France, Sept. 2018.
Annotation Tools schreiber tempo-cnn (model=cnn), https://github.com/hendriks73/tempo-cnn

schreiber2018/fcn

Attribute Value
Corpus smc_mirex
Version 0.0.2
Data Source Hendrik Schreiber, Meinard Müller. A Single-Step Approach to Musical Tempo Estimation Using a Convolutional Neural Network. In Proceedings of the 19th International Society for Music Information Retrieval Conference (ISMIR), Paris, France, Sept. 2018.
Annotation Tools schreiber tempo-cnn (model=fcn), https://github.com/hendriks73/tempo-cnn

schreiber2018/ismir2018

Attribute Value
Corpus smc_mirex
Version 0.0.2
Data Source Hendrik Schreiber, Meinard Müller. A Single-Step Approach to Musical Tempo Estimation Using a Convolutional Neural Network. In Proceedings of the 19th International Society for Music Information Retrieval Conference (ISMIR), Paris, France, Sept. 2018.
Annotation Tools schreiber tempo-cnn (model=ismir2018), https://github.com/hendriks73/tempo-cnn

sun2021/default

Attribute Value
Corpus smc_mirex
Version 0.0.2
Data Source Xiaoheng Sun, Qiqi He, Yongwei Gao, Wei Li. Musical Tempo Estimation Using a Multi-scale Network. in Proc. of the 22nd Int. Society for Music Information Retrieval Conf., Online, 2021
Annotation Tools https://github.com/Qqi-HE/TempoEstimation_MGANet
Annotator, bibtex Sun2021

Basic Statistics

Estimator Size Min Max Avg Stdev Sweet Oct. Start Sweet Oct. Coverage
boeck2015/tempodetector2016_default 217 40.82 240.00 102.30 44.73 58.00 0.58
boeck2019/multi_task 217 33.74 188.73 74.52 22.09 53.00 0.85
boeck2019/multi_task_hjdb 217 34.66 179.94 76.43 21.45 53.00 0.85
boeck2020/dar 217 33.62 199.66 74.91 25.54 53.00 0.75
davies2009/mirex_qm_tempotracker 217 71.78 215.33 136.10 31.83 96.00 0.86
percival2014/stem 217 51.94 150.89 92.58 20.31 69.00 0.88
schreiber2014/default 217 47.79 154.05 88.34 20.46 61.00 0.88
schreiber2017/ismir2017 217 22.40 149.83 90.05 23.38 58.00 0.81
schreiber2017/mirex2017 217 11.20 176.64 82.92 28.18 56.00 0.67
schreiber2018/cnn 217 49.00 224.00 96.84 27.94 61.00 0.85
schreiber2018/fcn 217 38.00 198.00 94.95 31.03 63.00 0.75
schreiber2018/ismir2018 217 53.00 205.00 96.91 26.05 67.00 0.89
sun2021/default 217 40.00 232.00 91.19 34.12 59.00 0.82

Table 2: Basic statistics.

CSV JSON LATEX PICKLE

Smoothed Tempo Distribution

Figure 4: Percentage of values in tempo interval.

CSV JSON LATEX PICKLE SVG PDF PNG

Accuracy

Accuracy1 is defined as the percentage of correct estimates, allowing a 4% tolerance for individual BPM values.

Accuracy2 additionally permits estimates to be wrong by a factor of 2, 3, 1/2 or 1/3 (so-called octave errors).

See [Gouyon2006].

Note: When comparing accuracy values for different algorithms, keep in mind that an algorithm may have been trained on the test set or that the test set may have even been created using one of the tested algorithms.

Accuracy Results for 1.0

Estimator Accuracy1 Accuracy2
boeck2020/dar 0.5668 0.6959
boeck2015/tempodetector2016_default 0.4654 0.6728
boeck2019/multi_task 0.4470 0.6452
boeck2019/multi_task_hjdb 0.4424 0.6221
schreiber2017/mirex2017 0.4424 0.5622
sun2021/default 0.3779 0.4793
schreiber2018/fcn 0.3594 0.4793
schreiber2017/ismir2017 0.3548 0.5438
schreiber2014/default 0.3502 0.5484
schreiber2018/cnn 0.3410 0.5115
schreiber2018/ismir2018 0.3041 0.4793
percival2014/stem 0.2765 0.4562
davies2009/mirex_qm_tempotracker 0.1336 0.3180

Table 3: Mean accuracy of estimates compared to version 1.0 with 4% tolerance ordered by Accuracy1.

CSV JSON LATEX PICKLE

Raw data Accuracy1: CSV JSON LATEX PICKLE

Raw data Accuracy2: CSV JSON LATEX PICKLE

Accuracy1 for 1.0

Figure 5: Mean Accuracy1 for estimates compared to version 1.0 depending on tolerance.

CSV JSON LATEX PICKLE SVG PDF PNG

Accuracy2 for 1.0

Figure 6: Mean Accuracy2 for estimates compared to version 1.0 depending on tolerance.

CSV JSON LATEX PICKLE SVG PDF PNG

Accuracy Results for 2.0

Estimator Accuracy1 Accuracy2
boeck2020/dar 0.5668 0.6959
boeck2015/tempodetector2016_default 0.4654 0.6728
boeck2019/multi_task 0.4470 0.6452
boeck2019/multi_task_hjdb 0.4424 0.6221
schreiber2017/mirex2017 0.4424 0.5622
sun2021/default 0.3779 0.4793
schreiber2018/fcn 0.3594 0.4793
schreiber2017/ismir2017 0.3548 0.5438
schreiber2014/default 0.3502 0.5484
schreiber2018/cnn 0.3410 0.5115
schreiber2018/ismir2018 0.3041 0.4793
percival2014/stem 0.2765 0.4562
davies2009/mirex_qm_tempotracker 0.1336 0.3134

Table 4: Mean accuracy of estimates compared to version 2.0 with 4% tolerance ordered by Accuracy1.

CSV JSON LATEX PICKLE

Raw data Accuracy1: CSV JSON LATEX PICKLE

Raw data Accuracy2: CSV JSON LATEX PICKLE

Accuracy1 for 2.0

Figure 7: Mean Accuracy1 for estimates compared to version 2.0 depending on tolerance.

CSV JSON LATEX PICKLE SVG PDF PNG

Accuracy2 for 2.0

Figure 8: Mean Accuracy2 for estimates compared to version 2.0 depending on tolerance.

CSV JSON LATEX PICKLE SVG PDF PNG

Differing Items

For which items did a given estimator not estimate a correct value with respect to a given ground truth? Are there items which are either very difficult, not suitable for the task, or incorrectly annotated and therefore never estimated correctly, regardless which estimator is used?

Differing Items Accuracy1

Items with different tempo annotations (Accuracy1, 4% tolerance) in different versions:

1.0 compared with boeck2015/tempodetector2016_default (116 differences): ‘SMC_002’ ‘SMC_003’ ‘SMC_004’ ‘SMC_005’ ‘SMC_006’ ‘SMC_008’ ‘SMC_009’ ‘SMC_014’ ‘SMC_015’ ‘SMC_018’ ‘SMC_019’ … CSV

1.0 compared with boeck2019/multi_task (120 differences): ‘SMC_001’ ‘SMC_002’ ‘SMC_003’ ‘SMC_005’ ‘SMC_006’ ‘SMC_007’ ‘SMC_008’ ‘SMC_009’ ‘SMC_014’ ‘SMC_015’ ‘SMC_018’ … CSV

1.0 compared with boeck2019/multi_task_hjdb (121 differences): ‘SMC_001’ ‘SMC_002’ ‘SMC_004’ ‘SMC_005’ ‘SMC_006’ ‘SMC_007’ ‘SMC_008’ ‘SMC_009’ ‘SMC_014’ ‘SMC_015’ ‘SMC_018’ … CSV

1.0 compared with boeck2020/dar (94 differences): ‘SMC_002’ ‘SMC_003’ ‘SMC_005’ ‘SMC_006’ ‘SMC_008’ ‘SMC_009’ ‘SMC_015’ ‘SMC_018’ ‘SMC_019’ ‘SMC_021’ ‘SMC_022’ … CSV

1.0 compared with davies2009/mirex_qm_tempotracker (188 differences): ‘SMC_001’ ‘SMC_002’ ‘SMC_003’ ‘SMC_004’ ‘SMC_005’ ‘SMC_006’ ‘SMC_007’ ‘SMC_009’ ‘SMC_011’ ‘SMC_012’ ‘SMC_013’ … CSV

1.0 compared with percival2014/stem (157 differences): ‘SMC_001’ ‘SMC_002’ ‘SMC_003’ ‘SMC_004’ ‘SMC_005’ ‘SMC_007’ ‘SMC_008’ ‘SMC_011’ ‘SMC_014’ ‘SMC_015’ ‘SMC_016’ … CSV

1.0 compared with schreiber2014/default (141 differences): ‘SMC_001’ ‘SMC_002’ ‘SMC_004’ ‘SMC_005’ ‘SMC_006’ ‘SMC_007’ ‘SMC_008’ ‘SMC_009’ ‘SMC_011’ ‘SMC_015’ ‘SMC_017’ … CSV

1.0 compared with schreiber2017/ismir2017 (140 differences): ‘SMC_001’ ‘SMC_002’ ‘SMC_003’ ‘SMC_004’ ‘SMC_005’ ‘SMC_006’ ‘SMC_008’ ‘SMC_009’ ‘SMC_014’ ‘SMC_015’ ‘SMC_017’ … CSV

1.0 compared with schreiber2017/mirex2017 (121 differences): ‘SMC_002’ ‘SMC_003’ ‘SMC_004’ ‘SMC_006’ ‘SMC_008’ ‘SMC_009’ ‘SMC_014’ ‘SMC_015’ ‘SMC_017’ ‘SMC_018’ ‘SMC_019’ … CSV

1.0 compared with schreiber2018/cnn (143 differences): ‘SMC_001’ ‘SMC_002’ ‘SMC_003’ ‘SMC_004’ ‘SMC_005’ ‘SMC_006’ ‘SMC_007’ ‘SMC_009’ ‘SMC_011’ ‘SMC_015’ ‘SMC_017’ … CSV

1.0 compared with schreiber2018/fcn (139 differences): ‘SMC_002’ ‘SMC_003’ ‘SMC_005’ ‘SMC_006’ ‘SMC_007’ ‘SMC_008’ ‘SMC_009’ ‘SMC_011’ ‘SMC_014’ ‘SMC_015’ ‘SMC_017’ … CSV

1.0 compared with schreiber2018/ismir2018 (151 differences): ‘SMC_001’ ‘SMC_002’ ‘SMC_003’ ‘SMC_004’ ‘SMC_005’ ‘SMC_006’ ‘SMC_007’ ‘SMC_009’ ‘SMC_014’ ‘SMC_015’ ‘SMC_016’ … CSV

1.0 compared with sun2021/default (135 differences): ‘SMC_002’ ‘SMC_003’ ‘SMC_004’ ‘SMC_005’ ‘SMC_006’ ‘SMC_007’ ‘SMC_008’ ‘SMC_009’ ‘SMC_014’ ‘SMC_015’ ‘SMC_016’ … CSV

2.0 compared with boeck2015/tempodetector2016_default (116 differences): ‘SMC_002’ ‘SMC_003’ ‘SMC_004’ ‘SMC_005’ ‘SMC_006’ ‘SMC_008’ ‘SMC_009’ ‘SMC_014’ ‘SMC_015’ ‘SMC_018’ ‘SMC_019’ … CSV

2.0 compared with boeck2019/multi_task (120 differences): ‘SMC_001’ ‘SMC_002’ ‘SMC_003’ ‘SMC_005’ ‘SMC_006’ ‘SMC_007’ ‘SMC_008’ ‘SMC_009’ ‘SMC_014’ ‘SMC_015’ ‘SMC_018’ … CSV

2.0 compared with boeck2019/multi_task_hjdb (121 differences): ‘SMC_001’ ‘SMC_002’ ‘SMC_004’ ‘SMC_005’ ‘SMC_006’ ‘SMC_007’ ‘SMC_008’ ‘SMC_009’ ‘SMC_014’ ‘SMC_015’ ‘SMC_018’ … CSV

2.0 compared with boeck2020/dar (94 differences): ‘SMC_002’ ‘SMC_003’ ‘SMC_005’ ‘SMC_006’ ‘SMC_008’ ‘SMC_009’ ‘SMC_015’ ‘SMC_018’ ‘SMC_019’ ‘SMC_021’ ‘SMC_022’ … CSV

2.0 compared with davies2009/mirex_qm_tempotracker (188 differences): ‘SMC_001’ ‘SMC_002’ ‘SMC_003’ ‘SMC_004’ ‘SMC_005’ ‘SMC_006’ ‘SMC_007’ ‘SMC_009’ ‘SMC_011’ ‘SMC_012’ ‘SMC_013’ … CSV

2.0 compared with percival2014/stem (157 differences): ‘SMC_001’ ‘SMC_002’ ‘SMC_003’ ‘SMC_004’ ‘SMC_005’ ‘SMC_007’ ‘SMC_008’ ‘SMC_011’ ‘SMC_014’ ‘SMC_015’ ‘SMC_016’ … CSV

2.0 compared with schreiber2014/default (141 differences): ‘SMC_001’ ‘SMC_002’ ‘SMC_004’ ‘SMC_005’ ‘SMC_006’ ‘SMC_007’ ‘SMC_008’ ‘SMC_009’ ‘SMC_011’ ‘SMC_015’ ‘SMC_017’ … CSV

2.0 compared with schreiber2017/ismir2017 (140 differences): ‘SMC_001’ ‘SMC_002’ ‘SMC_003’ ‘SMC_004’ ‘SMC_005’ ‘SMC_006’ ‘SMC_008’ ‘SMC_009’ ‘SMC_014’ ‘SMC_015’ ‘SMC_017’ … CSV

2.0 compared with schreiber2017/mirex2017 (121 differences): ‘SMC_002’ ‘SMC_003’ ‘SMC_004’ ‘SMC_006’ ‘SMC_008’ ‘SMC_009’ ‘SMC_014’ ‘SMC_015’ ‘SMC_017’ ‘SMC_018’ ‘SMC_019’ … CSV

2.0 compared with schreiber2018/cnn (143 differences): ‘SMC_001’ ‘SMC_002’ ‘SMC_003’ ‘SMC_004’ ‘SMC_005’ ‘SMC_006’ ‘SMC_007’ ‘SMC_009’ ‘SMC_011’ ‘SMC_015’ ‘SMC_017’ … CSV

2.0 compared with schreiber2018/fcn (139 differences): ‘SMC_002’ ‘SMC_003’ ‘SMC_005’ ‘SMC_006’ ‘SMC_007’ ‘SMC_008’ ‘SMC_009’ ‘SMC_011’ ‘SMC_014’ ‘SMC_015’ ‘SMC_017’ … CSV

2.0 compared with schreiber2018/ismir2018 (151 differences): ‘SMC_001’ ‘SMC_002’ ‘SMC_003’ ‘SMC_004’ ‘SMC_005’ ‘SMC_006’ ‘SMC_007’ ‘SMC_009’ ‘SMC_014’ ‘SMC_015’ ‘SMC_016’ … CSV

2.0 compared with sun2021/default (135 differences): ‘SMC_002’ ‘SMC_003’ ‘SMC_004’ ‘SMC_005’ ‘SMC_006’ ‘SMC_007’ ‘SMC_008’ ‘SMC_009’ ‘SMC_014’ ‘SMC_015’ ‘SMC_016’ … CSV

None of the estimators estimated the following 37 items ‘correctly’ using Accuracy1: ‘SMC_002’ ‘SMC_015’ ‘SMC_018’ ‘SMC_019’ ‘SMC_023’ ‘SMC_024’ ‘SMC_032’ ‘SMC_084’ ‘SMC_105’ ‘SMC_111’ ‘SMC_116’ … CSV

Differing Items Accuracy2

Items with different tempo annotations (Accuracy2, 4% tolerance) in different versions:

1.0 compared with boeck2015/tempodetector2016_default (71 differences): ‘SMC_003’ ‘SMC_004’ ‘SMC_006’ ‘SMC_008’ ‘SMC_014’ ‘SMC_015’ ‘SMC_018’ ‘SMC_021’ ‘SMC_022’ ‘SMC_024’ ‘SMC_032’ … CSV

1.0 compared with boeck2019/multi_task (77 differences): ‘SMC_002’ ‘SMC_006’ ‘SMC_007’ ‘SMC_008’ ‘SMC_009’ ‘SMC_014’ ‘SMC_015’ ‘SMC_018’ ‘SMC_021’ ‘SMC_023’ ‘SMC_024’ … CSV

1.0 compared with boeck2019/multi_task_hjdb (82 differences): ‘SMC_002’ ‘SMC_004’ ‘SMC_006’ ‘SMC_007’ ‘SMC_008’ ‘SMC_009’ ‘SMC_014’ ‘SMC_015’ ‘SMC_018’ ‘SMC_021’ ‘SMC_022’ … CSV

1.0 compared with boeck2020/dar (66 differences): ‘SMC_002’ ‘SMC_006’ ‘SMC_008’ ‘SMC_015’ ‘SMC_018’ ‘SMC_021’ ‘SMC_022’ ‘SMC_024’ ‘SMC_028’ ‘SMC_032’ ‘SMC_033’ … CSV

1.0 compared with davies2009/mirex_qm_tempotracker (148 differences): ‘SMC_002’ ‘SMC_003’ ‘SMC_004’ ‘SMC_005’ ‘SMC_006’ ‘SMC_007’ ‘SMC_009’ ‘SMC_011’ ‘SMC_012’ ‘SMC_013’ ‘SMC_014’ … CSV

1.0 compared with percival2014/stem (118 differences): ‘SMC_002’ ‘SMC_003’ ‘SMC_004’ ‘SMC_007’ ‘SMC_011’ ‘SMC_014’ ‘SMC_015’ ‘SMC_016’ ‘SMC_018’ ‘SMC_022’ ‘SMC_023’ … CSV

1.0 compared with schreiber2014/default (98 differences): ‘SMC_002’ ‘SMC_004’ ‘SMC_007’ ‘SMC_008’ ‘SMC_009’ ‘SMC_011’ ‘SMC_015’ ‘SMC_017’ ‘SMC_018’ ‘SMC_021’ ‘SMC_022’ … CSV

1.0 compared with schreiber2017/ismir2017 (99 differences): ‘SMC_002’ ‘SMC_004’ ‘SMC_006’ ‘SMC_008’ ‘SMC_009’ ‘SMC_014’ ‘SMC_015’ ‘SMC_017’ ‘SMC_021’ ‘SMC_023’ ‘SMC_024’ … CSV

1.0 compared with schreiber2017/mirex2017 (95 differences): ‘SMC_002’ ‘SMC_004’ ‘SMC_008’ ‘SMC_009’ ‘SMC_014’ ‘SMC_015’ ‘SMC_017’ ‘SMC_021’ ‘SMC_023’ ‘SMC_024’ ‘SMC_028’ … CSV

1.0 compared with schreiber2018/cnn (106 differences): ‘SMC_002’ ‘SMC_003’ ‘SMC_004’ ‘SMC_006’ ‘SMC_007’ ‘SMC_011’ ‘SMC_015’ ‘SMC_017’ ‘SMC_018’ ‘SMC_021’ ‘SMC_023’ … CSV

1.0 compared with schreiber2018/fcn (113 differences): ‘SMC_003’ ‘SMC_005’ ‘SMC_006’ ‘SMC_007’ ‘SMC_008’ ‘SMC_011’ ‘SMC_014’ ‘SMC_015’ ‘SMC_017’ ‘SMC_018’ ‘SMC_021’ … CSV

1.0 compared with schreiber2018/ismir2018 (113 differences): ‘SMC_002’ ‘SMC_003’ ‘SMC_004’ ‘SMC_006’ ‘SMC_007’ ‘SMC_009’ ‘SMC_014’ ‘SMC_015’ ‘SMC_016’ ‘SMC_017’ ‘SMC_018’ … CSV

1.0 compared with sun2021/default (113 differences): ‘SMC_003’ ‘SMC_004’ ‘SMC_005’ ‘SMC_006’ ‘SMC_007’ ‘SMC_008’ ‘SMC_009’ ‘SMC_014’ ‘SMC_015’ ‘SMC_016’ ‘SMC_018’ … CSV

2.0 compared with boeck2015/tempodetector2016_default (71 differences): ‘SMC_003’ ‘SMC_004’ ‘SMC_006’ ‘SMC_008’ ‘SMC_014’ ‘SMC_015’ ‘SMC_018’ ‘SMC_021’ ‘SMC_022’ ‘SMC_024’ ‘SMC_032’ … CSV

2.0 compared with boeck2019/multi_task (77 differences): ‘SMC_002’ ‘SMC_006’ ‘SMC_007’ ‘SMC_008’ ‘SMC_009’ ‘SMC_014’ ‘SMC_015’ ‘SMC_018’ ‘SMC_021’ ‘SMC_023’ ‘SMC_024’ … CSV

2.0 compared with boeck2019/multi_task_hjdb (82 differences): ‘SMC_002’ ‘SMC_004’ ‘SMC_006’ ‘SMC_007’ ‘SMC_008’ ‘SMC_009’ ‘SMC_014’ ‘SMC_015’ ‘SMC_018’ ‘SMC_021’ ‘SMC_022’ … CSV

2.0 compared with boeck2020/dar (66 differences): ‘SMC_002’ ‘SMC_006’ ‘SMC_008’ ‘SMC_015’ ‘SMC_018’ ‘SMC_021’ ‘SMC_022’ ‘SMC_024’ ‘SMC_028’ ‘SMC_032’ ‘SMC_033’ … CSV

2.0 compared with davies2009/mirex_qm_tempotracker (149 differences): ‘SMC_002’ ‘SMC_003’ ‘SMC_004’ ‘SMC_005’ ‘SMC_006’ ‘SMC_007’ ‘SMC_009’ ‘SMC_011’ ‘SMC_012’ ‘SMC_013’ ‘SMC_014’ … CSV

2.0 compared with percival2014/stem (118 differences): ‘SMC_002’ ‘SMC_003’ ‘SMC_004’ ‘SMC_007’ ‘SMC_011’ ‘SMC_014’ ‘SMC_015’ ‘SMC_016’ ‘SMC_018’ ‘SMC_022’ ‘SMC_023’ … CSV

2.0 compared with schreiber2014/default (98 differences): ‘SMC_002’ ‘SMC_004’ ‘SMC_007’ ‘SMC_008’ ‘SMC_009’ ‘SMC_011’ ‘SMC_015’ ‘SMC_017’ ‘SMC_018’ ‘SMC_021’ ‘SMC_022’ … CSV

2.0 compared with schreiber2017/ismir2017 (99 differences): ‘SMC_002’ ‘SMC_004’ ‘SMC_006’ ‘SMC_008’ ‘SMC_009’ ‘SMC_014’ ‘SMC_015’ ‘SMC_017’ ‘SMC_021’ ‘SMC_023’ ‘SMC_024’ … CSV

2.0 compared with schreiber2017/mirex2017 (95 differences): ‘SMC_002’ ‘SMC_004’ ‘SMC_008’ ‘SMC_009’ ‘SMC_014’ ‘SMC_015’ ‘SMC_017’ ‘SMC_021’ ‘SMC_023’ ‘SMC_024’ ‘SMC_028’ … CSV

2.0 compared with schreiber2018/cnn (106 differences): ‘SMC_002’ ‘SMC_003’ ‘SMC_004’ ‘SMC_006’ ‘SMC_007’ ‘SMC_011’ ‘SMC_015’ ‘SMC_017’ ‘SMC_018’ ‘SMC_021’ ‘SMC_023’ … CSV

2.0 compared with schreiber2018/fcn (113 differences): ‘SMC_003’ ‘SMC_005’ ‘SMC_006’ ‘SMC_007’ ‘SMC_008’ ‘SMC_011’ ‘SMC_014’ ‘SMC_015’ ‘SMC_017’ ‘SMC_018’ ‘SMC_021’ … CSV

2.0 compared with schreiber2018/ismir2018 (113 differences): ‘SMC_002’ ‘SMC_003’ ‘SMC_004’ ‘SMC_006’ ‘SMC_007’ ‘SMC_009’ ‘SMC_014’ ‘SMC_015’ ‘SMC_016’ ‘SMC_017’ ‘SMC_018’ … CSV

2.0 compared with sun2021/default (113 differences): ‘SMC_003’ ‘SMC_004’ ‘SMC_005’ ‘SMC_006’ ‘SMC_007’ ‘SMC_008’ ‘SMC_009’ ‘SMC_014’ ‘SMC_015’ ‘SMC_016’ ‘SMC_018’ … CSV

None of the estimators estimated the following 14 items ‘correctly’ using Accuracy2: ‘SMC_015’ ‘SMC_032’ ‘SMC_111’ ‘SMC_137’ ‘SMC_158’ ‘SMC_174’ ‘SMC_209’ ‘SMC_215’ ‘SMC_223’ ‘SMC_226’ ‘SMC_235’ … CSV

Significance of Differences

Estimator boeck2015/tempodetector2016_default boeck2019/multi_task boeck2019/multi_task_hjdb boeck2020/dar davies2009/mirex_qm_tempotracker percival2014/stem schreiber2014/default schreiber2017/ismir2017 schreiber2017/mirex2017 schreiber2018/cnn schreiber2018/fcn schreiber2018/ismir2018 sun2021/default
boeck2015/tempodetector2016_default 1.0000 0.6985 0.5758 0.0026 0.0000 0.0000 0.0022 0.0037 0.5682 0.0011 0.0052 0.0001 0.0248
boeck2019/multi_task 0.6985 1.0000 1.0000 0.0003 0.0000 0.0000 0.0125 0.0151 1.0000 0.0095 0.0327 0.0005 0.1060
boeck2019/multi_task_hjdb 0.5758 1.0000 1.0000 0.0002 0.0000 0.0000 0.0091 0.0183 0.8897 0.0092 0.0481 0.0004 0.0925
boeck2020/dar 0.0026 0.0003 0.0002 1.0000 0.0000 0.0000 0.0000 0.0000 0.0007 0.0000 0.0000 0.0000 0.0000
davies2009/mirex_qm_tempotracker 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
percival2014/stem 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0402 0.0241 0.0000 0.0649 0.0247 0.4514 0.0062
schreiber2014/default 0.0022 0.0125 0.0091 0.0000 0.0000 0.0402 1.0000 1.0000 0.0105 0.8679 0.8804 0.2026 0.4966
schreiber2017/ismir2017 0.0037 0.0151 0.0183 0.0000 0.0000 0.0241 1.0000 1.0000 0.0026 0.7660 1.0000 0.1524 0.6198
schreiber2017/mirex2017 0.5682 1.0000 0.8897 0.0007 0.0000 0.0000 0.0105 0.0026 1.0000 0.0054 0.0356 0.0003 0.1307
schreiber2018/cnn 0.0011 0.0095 0.0092 0.0000 0.0000 0.0649 0.8679 0.7660 0.0054 1.0000 0.6655 0.2005 0.3317
schreiber2018/fcn 0.0052 0.0327 0.0481 0.0000 0.0000 0.0247 0.8804 1.0000 0.0356 0.6655 1.0000 0.1114 0.6936
schreiber2018/ismir2018 0.0001 0.0005 0.0004 0.0000 0.0000 0.4514 0.2026 0.1524 0.0003 0.2005 0.1114 1.0000 0.0293
sun2021/default 0.0248 0.1060 0.0925 0.0000 0.0000 0.0062 0.4966 0.6198 0.1307 0.3317 0.6936 0.0293 1.0000

Table 5: McNemar p-values, using reference annotations 1.0 as groundtruth with Accuracy1 [Gouyon2006]. H0: both estimators disagree with the groundtruth to the same amount. If p<=ɑ, reject H0, i.e. we have a significant difference in the disagreement with the groundtruth. In the table, p-values<0.05 are set in bold.

CSV JSON LATEX PICKLE

Estimator boeck2015/tempodetector2016_default boeck2019/multi_task boeck2019/multi_task_hjdb boeck2020/dar davies2009/mirex_qm_tempotracker percival2014/stem schreiber2014/default schreiber2017/ismir2017 schreiber2017/mirex2017 schreiber2018/cnn schreiber2018/fcn schreiber2018/ismir2018 sun2021/default
boeck2015/tempodetector2016_default 1.0000 0.6985 0.5758 0.0026 0.0000 0.0000 0.0022 0.0037 0.5682 0.0011 0.0052 0.0001 0.0248
boeck2019/multi_task 0.6985 1.0000 1.0000 0.0003 0.0000 0.0000 0.0125 0.0151 1.0000 0.0095 0.0327 0.0005 0.1060
boeck2019/multi_task_hjdb 0.5758 1.0000 1.0000 0.0002 0.0000 0.0000 0.0091 0.0183 0.8897 0.0092 0.0481 0.0004 0.0925
boeck2020/dar 0.0026 0.0003 0.0002 1.0000 0.0000 0.0000 0.0000 0.0000 0.0007 0.0000 0.0000 0.0000 0.0000
davies2009/mirex_qm_tempotracker 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
percival2014/stem 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0402 0.0241 0.0000 0.0649 0.0247 0.4514 0.0062
schreiber2014/default 0.0022 0.0125 0.0091 0.0000 0.0000 0.0402 1.0000 1.0000 0.0105 0.8679 0.8804 0.2026 0.4966
schreiber2017/ismir2017 0.0037 0.0151 0.0183 0.0000 0.0000 0.0241 1.0000 1.0000 0.0026 0.7660 1.0000 0.1524 0.6198
schreiber2017/mirex2017 0.5682 1.0000 0.8897 0.0007 0.0000 0.0000 0.0105 0.0026 1.0000 0.0054 0.0356 0.0003 0.1307
schreiber2018/cnn 0.0011 0.0095 0.0092 0.0000 0.0000 0.0649 0.8679 0.7660 0.0054 1.0000 0.6655 0.2005 0.3317
schreiber2018/fcn 0.0052 0.0327 0.0481 0.0000 0.0000 0.0247 0.8804 1.0000 0.0356 0.6655 1.0000 0.1114 0.6936
schreiber2018/ismir2018 0.0001 0.0005 0.0004 0.0000 0.0000 0.4514 0.2026 0.1524 0.0003 0.2005 0.1114 1.0000 0.0293
sun2021/default 0.0248 0.1060 0.0925 0.0000 0.0000 0.0062 0.4966 0.6198 0.1307 0.3317 0.6936 0.0293 1.0000

Table 6: McNemar p-values, using reference annotations 2.0 as groundtruth with Accuracy1 [Gouyon2006]. H0: both estimators disagree with the groundtruth to the same amount. If p<=ɑ, reject H0, i.e. we have a significant difference in the disagreement with the groundtruth. In the table, p-values<0.05 are set in bold.

CSV JSON LATEX PICKLE

Estimator boeck2015/tempodetector2016_default boeck2019/multi_task boeck2019/multi_task_hjdb boeck2020/dar davies2009/mirex_qm_tempotracker percival2014/stem schreiber2014/default schreiber2017/ismir2017 schreiber2017/mirex2017 schreiber2018/cnn schreiber2018/fcn schreiber2018/ismir2018 sun2021/default
boeck2015/tempodetector2016_default 1.0000 0.4966 0.0989 0.5327 0.0000 0.0000 0.0004 0.0003 0.0015 0.0000 0.0000 0.0000 0.0000
boeck2019/multi_task 0.4966 1.0000 0.4869 0.1081 0.0000 0.0000 0.0086 0.0071 0.0300 0.0009 0.0000 0.0000 0.0000
boeck2019/multi_task_hjdb 0.0989 0.4869 1.0000 0.0113 0.0000 0.0001 0.0402 0.0331 0.0984 0.0071 0.0005 0.0004 0.0002
boeck2020/dar 0.5327 0.1081 0.0113 1.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000
davies2009/mirex_qm_tempotracker 0.0000 0.0000 0.0000 0.0000 1.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0001
percival2014/stem 0.0000 0.0000 0.0001 0.0000 0.0002 1.0000 0.0315 0.0377 0.0145 0.1550 0.6350 0.6025 0.6198
schreiber2014/default 0.0004 0.0086 0.0402 0.0000 0.0000 0.0315 1.0000 1.0000 0.7709 0.3740 0.0817 0.0872 0.0966
schreiber2017/ismir2017 0.0003 0.0071 0.0331 0.0000 0.0000 0.0377 1.0000 1.0000 0.3437 0.4497 0.1096 0.1096 0.1255
schreiber2017/mirex2017 0.0015 0.0300 0.0984 0.0002 0.0000 0.0145 0.7709 0.3437 1.0000 0.2077 0.0451 0.0385 0.0512
schreiber2018/cnn 0.0000 0.0009 0.0071 0.0000 0.0000 0.1550 0.3740 0.4497 0.2077 1.0000 0.4101 0.3713 0.4568
schreiber2018/fcn 0.0000 0.0000 0.0005 0.0000 0.0001 0.6350 0.0817 0.1096 0.0451 0.4101 1.0000 0.8897 0.8918
schreiber2018/ismir2018 0.0000 0.0000 0.0004 0.0000 0.0000 0.6025 0.0872 0.1096 0.0385 0.3713 0.8897 1.0000 0.8937
sun2021/default 0.0000 0.0000 0.0002 0.0000 0.0001 0.6198 0.0966 0.1255 0.0512 0.4568 0.8918 0.8937 1.0000

Table 7: McNemar p-values, using reference annotations 1.0 as groundtruth with Accuracy2 [Gouyon2006]. H0: both estimators disagree with the groundtruth to the same amount. If p<=ɑ, reject H0, i.e. we have a significant difference in the disagreement with the groundtruth. In the table, p-values<0.05 are set in bold.

CSV JSON LATEX PICKLE

Estimator boeck2015/tempodetector2016_default boeck2019/multi_task boeck2019/multi_task_hjdb boeck2020/dar davies2009/mirex_qm_tempotracker percival2014/stem schreiber2014/default schreiber2017/ismir2017 schreiber2017/mirex2017 schreiber2018/cnn schreiber2018/fcn schreiber2018/ismir2018 sun2021/default
boeck2015/tempodetector2016_default 1.0000 0.4966 0.0989 0.5327 0.0000 0.0000 0.0004 0.0003 0.0015 0.0000 0.0000 0.0000 0.0000
boeck2019/multi_task 0.4966 1.0000 0.4869 0.1081 0.0000 0.0000 0.0086 0.0071 0.0300 0.0009 0.0000 0.0000 0.0000
boeck2019/multi_task_hjdb 0.0989 0.4869 1.0000 0.0113 0.0000 0.0001 0.0402 0.0331 0.0984 0.0071 0.0005 0.0004 0.0002
boeck2020/dar 0.5327 0.1081 0.0113 1.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000
davies2009/mirex_qm_tempotracker 0.0000 0.0000 0.0000 0.0000 1.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
percival2014/stem 0.0000 0.0000 0.0001 0.0000 0.0001 1.0000 0.0315 0.0377 0.0145 0.1550 0.6350 0.6025 0.6198
schreiber2014/default 0.0004 0.0086 0.0402 0.0000 0.0000 0.0315 1.0000 1.0000 0.7709 0.3740 0.0817 0.0872 0.0966
schreiber2017/ismir2017 0.0003 0.0071 0.0331 0.0000 0.0000 0.0377 1.0000 1.0000 0.3437 0.4497 0.1096 0.1096 0.1255
schreiber2017/mirex2017 0.0015 0.0300 0.0984 0.0002 0.0000 0.0145 0.7709 0.3437 1.0000 0.2077 0.0451 0.0385 0.0512
schreiber2018/cnn 0.0000 0.0009 0.0071 0.0000 0.0000 0.1550 0.3740 0.4497 0.2077 1.0000 0.4101 0.3713 0.4568
schreiber2018/fcn 0.0000 0.0000 0.0005 0.0000 0.0000 0.6350 0.0817 0.1096 0.0451 0.4101 1.0000 0.8897 0.8918
schreiber2018/ismir2018 0.0000 0.0000 0.0004 0.0000 0.0000 0.6025 0.0872 0.1096 0.0385 0.3713 0.8897 1.0000 0.8937
sun2021/default 0.0000 0.0000 0.0002 0.0000 0.0000 0.6198 0.0966 0.1255 0.0512 0.4568 0.8918 0.8937 1.0000

Table 8: McNemar p-values, using reference annotations 2.0 as groundtruth with Accuracy2 [Gouyon2006]. H0: both estimators disagree with the groundtruth to the same amount. If p<=ɑ, reject H0, i.e. we have a significant difference in the disagreement with the groundtruth. In the table, p-values<0.05 are set in bold.

CSV JSON LATEX PICKLE

Accuracy1 on cvar-Subsets

How well does an estimator perform, when only taking tracks into account that have a cvar-value of less than τ, i.e., have a more or less stable beat?

Accuracy1 on cvar-Subsets for 1.0 based on cvar-Values from 1.0

Figure 9: Mean Accuracy1 compared to version 1.0 for tracks with cvar < τ based on beat annotations from 1.0.

CSV JSON LATEX PICKLE SVG PDF PNG

Accuracy1 on cvar-Subsets for 2.0 based on cvar-Values from 1.0

Figure 10: Mean Accuracy1 compared to version 2.0 for tracks with cvar < τ based on beat annotations from 2.0.

CSV JSON LATEX PICKLE SVG PDF PNG

Accuracy2 on cvar-Subsets

How well does an estimator perform, when only taking tracks into account that have a cvar-value of less than τ, i.e., have a more or less stable beat?

Accuracy2 on cvar-Subsets for 1.0 based on cvar-Values from 1.0

Figure 11: Mean Accuracy2 compared to version 1.0 for tracks with cvar < τ based on beat annotations from 1.0.

CSV JSON LATEX PICKLE SVG PDF PNG

Accuracy2 on cvar-Subsets for 2.0 based on cvar-Values from 1.0

Figure 12: Mean Accuracy2 compared to version 2.0 for tracks with cvar < τ based on beat annotations from 2.0.

CSV JSON LATEX PICKLE SVG PDF PNG

Accuracy1 on Tempo-Subsets

How well does an estimator perform, when only taking a subset of the reference annotations into account? The graphs show mean Accuracy1 for reference subsets with tempi in [T-10,T+10] BPM. Note that the graphs do not show confidence intervals and that some values may be based on very few estimates.

Accuracy1 on Tempo-Subsets for 1.0

Figure 13: Mean Accuracy1 for estimates compared to version 1.0 for tempo intervals around T.

CSV JSON LATEX PICKLE SVG PDF PNG

Accuracy1 on Tempo-Subsets for 2.0

Figure 14: Mean Accuracy1 for estimates compared to version 2.0 for tempo intervals around T.

CSV JSON LATEX PICKLE SVG PDF PNG

Accuracy2 on Tempo-Subsets

How well does an estimator perform, when only taking a subset of the reference annotations into account? The graphs show mean Accuracy2 for reference subsets with tempi in [T-10,T+10] BPM. Note that the graphs do not show confidence intervals and that some values may be based on very few estimates.

Accuracy2 on Tempo-Subsets for 1.0

Figure 15: Mean Accuracy2 for estimates compared to version 1.0 for tempo intervals around T.

CSV JSON LATEX PICKLE SVG PDF PNG

Accuracy2 on Tempo-Subsets for 2.0

Figure 16: Mean Accuracy2 for estimates compared to version 2.0 for tempo intervals around T.

CSV JSON LATEX PICKLE SVG PDF PNG

Estimated Accuracy1 for Tempo

When fitting a generalized additive model (GAM) to Accuracy1-values and a ground truth, what Accuracy1 can we expect with confidence?

Estimated Accuracy1 for Tempo for 1.0

Predictions of GAMs trained on Accuracy1 for estimates for reference 1.0.

Figure 17: Accuracy1 predictions of a generalized additive model (GAM) fit to Accuracy1 results for 1.0. The 95% confidence interval around the prediction is shaded in gray.

CSV JSON LATEX PICKLE SVG PDF PNG

Estimated Accuracy1 for Tempo for 2.0

Predictions of GAMs trained on Accuracy1 for estimates for reference 2.0.

Figure 18: Accuracy1 predictions of a generalized additive model (GAM) fit to Accuracy1 results for 2.0. The 95% confidence interval around the prediction is shaded in gray.

CSV JSON LATEX PICKLE SVG PDF PNG

Estimated Accuracy2 for Tempo

When fitting a generalized additive model (GAM) to Accuracy2-values and a ground truth, what Accuracy2 can we expect with confidence?

Estimated Accuracy2 for Tempo for 1.0

Predictions of GAMs trained on Accuracy2 for estimates for reference 1.0.

Figure 19: Accuracy2 predictions of a generalized additive model (GAM) fit to Accuracy2 results for 1.0. The 95% confidence interval around the prediction is shaded in gray.

CSV JSON LATEX PICKLE SVG PDF PNG

Estimated Accuracy2 for Tempo for 2.0

Predictions of GAMs trained on Accuracy2 for estimates for reference 2.0.

Figure 20: Accuracy2 predictions of a generalized additive model (GAM) fit to Accuracy2 results for 2.0. The 95% confidence interval around the prediction is shaded in gray.

CSV JSON LATEX PICKLE SVG PDF PNG

Accuracy1 for ‘tag_open’ Tags

How well does an estimator perform, when only taking tracks into account that are tagged with some kind of label? Note that some values may be based on very few estimates.

Accuracy1 for ‘tag_open’ Tags for 1.0

Figure 21: Mean Accuracy1 of estimates compared to version 1.0 depending on tag from namespace ‘tag_open’.

CSV JSON LATEX PICKLE SVG PDF PNG

Accuracy1 for ‘tag_open’ Tags for 2.0

Figure 22: Mean Accuracy1 of estimates compared to version 2.0 depending on tag from namespace ‘tag_open’.

CSV JSON LATEX PICKLE SVG PDF PNG

Accuracy2 for ‘tag_open’ Tags

How well does an estimator perform, when only taking tracks into account that are tagged with some kind of label? Note that some values may be based on very few estimates.

Accuracy2 for ‘tag_open’ Tags for 1.0

Figure 23: Mean Accuracy2 of estimates compared to version 1.0 depending on tag from namespace ‘tag_open’.

CSV JSON LATEX PICKLE SVG PDF PNG

Accuracy2 for ‘tag_open’ Tags for 2.0

Figure 24: Mean Accuracy2 of estimates compared to version 2.0 depending on tag from namespace ‘tag_open’.

CSV JSON LATEX PICKLE SVG PDF PNG

OE1 and OE2

OE1 is defined as octave error between an estimate E and a reference value R.This means that the most common errors—by a factor of 2 or ½—have the same magnitude, namely 1: OE2(E) = log2(E/R).

OE2 is the signed OE1 corresponding to the minimum absolute OE1 allowing the octaveerrors 2, 3, 1/2, and 1/3: OE2(E) = arg minx(|x|) with x ∈ {OE1(E), OE1(2E), OE1(3E), OE1(½E), OE1(⅓E)}

Mean OE1/OE2 Results for 1.0

Estimator OE1_MEAN OE1_STDEV OE2_MEAN OE2_STDEV
boeck2020/dar -0.0318 0.5132 0.0031 0.1401
sun2021/default 0.2525 0.5570 -0.0003 0.1905
boeck2019/multi_task_hjdb 0.0233 0.5676 -0.0128 0.1631
schreiber2018/ismir2018 0.3748 0.5772 -0.0151 0.2257
schreiber2018/cnn 0.3680 0.5783 -0.0043 0.1957
boeck2019/multi_task -0.0177 0.5818 0.0015 0.1474
schreiber2014/default 0.2463 0.5907 -0.0214 0.1942
percival2014/stem 0.3198 0.6156 0.0071 0.2074
schreiber2018/fcn 0.3147 0.6172 -0.0134 0.2054
schreiber2017/ismir2017 0.2603 0.6227 -0.0178 0.1988
schreiber2017/mirex2017 0.1017 0.6319 -0.0208 0.1903
davies2009/mirex_qm_tempotracker 0.8693 0.6634 0.0506 0.2209
boeck2015/tempodetector2016_default 0.3676 0.6921 0.0234 0.1460

Table 9: Mean OE1/OE2 for estimates compared to version 1.0 ordered by standard deviation.

CSV JSON LATEX PICKLE

Raw data OE1: CSV JSON LATEX PICKLE

Raw data OE2: CSV JSON LATEX PICKLE

OE1 distribution for 1.0

Figure 25: OE1 for estimates compared to version 1.0. Shown are the mean OE1 and an empirical distribution of the sample, using kernel density estimation (KDE).

CSV JSON LATEX PICKLE SVG PDF PNG

OE2 distribution for 1.0

Figure 26: OE2 for estimates compared to version 1.0. Shown are the mean OE2 and an empirical distribution of the sample, using kernel density estimation (KDE).

CSV JSON LATEX PICKLE SVG PDF PNG

Mean OE1/OE2 Results for 2.0

Estimator OE1_MEAN OE1_STDEV OE2_MEAN OE2_STDEV
boeck2020/dar -0.0317 0.5134 0.0033 0.1399
sun2021/default 0.2526 0.5570 -0.0001 0.1909
boeck2019/multi_task_hjdb 0.0234 0.5676 -0.0127 0.1632
schreiber2018/ismir2018 0.3750 0.5772 -0.0149 0.2259
schreiber2018/cnn 0.3681 0.5783 -0.0041 0.1960
boeck2019/multi_task -0.0175 0.5818 0.0017 0.1475
schreiber2014/default 0.2465 0.5906 -0.0213 0.1943
percival2014/stem 0.3200 0.6158 0.0073 0.2076
schreiber2018/fcn 0.3149 0.6172 -0.0132 0.2056
schreiber2017/ismir2017 0.2605 0.6228 -0.0176 0.1988
schreiber2017/mirex2017 0.1019 0.6320 -0.0206 0.1903
davies2009/mirex_qm_tempotracker 0.8695 0.6634 0.0508 0.2210
boeck2015/tempodetector2016_default 0.3678 0.6922 0.0236 0.1461

Table 10: Mean OE1/OE2 for estimates compared to version 2.0 ordered by standard deviation.

CSV JSON LATEX PICKLE

Raw data OE1: CSV JSON LATEX PICKLE

Raw data OE2: CSV JSON LATEX PICKLE

OE1 distribution for 2.0

Figure 27: OE1 for estimates compared to version 2.0. Shown are the mean OE1 and an empirical distribution of the sample, using kernel density estimation (KDE).

CSV JSON LATEX PICKLE SVG PDF PNG

OE2 distribution for 2.0

Figure 28: OE2 for estimates compared to version 2.0. Shown are the mean OE2 and an empirical distribution of the sample, using kernel density estimation (KDE).

CSV JSON LATEX PICKLE SVG PDF PNG

Significance of Differences

Estimator boeck2015/tempodetector2016_default boeck2019/multi_task boeck2019/multi_task_hjdb boeck2020/dar davies2009/mirex_qm_tempotracker percival2014/stem schreiber2014/default schreiber2017/ismir2017 schreiber2017/mirex2017 schreiber2018/cnn schreiber2018/fcn schreiber2018/ismir2018 sun2021/default
boeck2015/tempodetector2016_default 1.0000 0.0000 0.0000 0.0000 0.0000 0.2863 0.0096 0.0223 0.0000 0.9936 0.2140 0.8693 0.0079
boeck2019/multi_task 0.0000 1.0000 0.0503 0.6456 0.0000 0.0000 0.0000 0.0000 0.0027 0.0000 0.0000 0.0000 0.0000
boeck2019/multi_task_hjdb 0.0000 0.0503 1.0000 0.0763 0.0000 0.0000 0.0000 0.0000 0.0417 0.0000 0.0000 0.0000 0.0000
boeck2020/dar 0.0000 0.6456 0.0763 1.0000 0.0000 0.0000 0.0000 0.0000 0.0010 0.0000 0.0000 0.0000 0.0000
davies2009/mirex_qm_tempotracker 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
percival2014/stem 0.2863 0.0000 0.0000 0.0000 0.0000 1.0000 0.0112 0.0590 0.0000 0.1344 0.8895 0.0750 0.0583
schreiber2014/default 0.0096 0.0000 0.0000 0.0000 0.0000 0.0112 1.0000 0.6544 0.0004 0.0000 0.0626 0.0000 0.8546
schreiber2017/ismir2017 0.0223 0.0000 0.0000 0.0000 0.0000 0.0590 0.6544 1.0000 0.0000 0.0009 0.1842 0.0008 0.8450
schreiber2017/mirex2017 0.0000 0.0027 0.0417 0.0010 0.0000 0.0000 0.0004 0.0000 1.0000 0.0000 0.0000 0.0000 0.0004
schreiber2018/cnn 0.9936 0.0000 0.0000 0.0000 0.0000 0.1344 0.0000 0.0009 0.0000 1.0000 0.1067 0.7890 0.0003
schreiber2018/fcn 0.2140 0.0000 0.0000 0.0000 0.0000 0.8895 0.0626 0.1842 0.0000 0.1067 1.0000 0.0889 0.1089
schreiber2018/ismir2018 0.8693 0.0000 0.0000 0.0000 0.0000 0.0750 0.0000 0.0008 0.0000 0.7890 0.0889 1.0000 0.0001
sun2021/default 0.0079 0.0000 0.0000 0.0000 0.0000 0.0583 0.8546 0.8450 0.0004 0.0003 0.1089 0.0001 1.0000

Table 11: Paired t-test p-values, using reference annotations 1.0 as groundtruth with OE1. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.

CSV JSON LATEX PICKLE

Estimator boeck2015/tempodetector2016_default boeck2019/multi_task boeck2019/multi_task_hjdb boeck2020/dar davies2009/mirex_qm_tempotracker percival2014/stem schreiber2014/default schreiber2017/ismir2017 schreiber2017/mirex2017 schreiber2018/cnn schreiber2018/fcn schreiber2018/ismir2018 sun2021/default
boeck2015/tempodetector2016_default 1.0000 0.0000 0.0000 0.0000 0.0000 0.2863 0.0096 0.0223 0.0000 0.9936 0.2140 0.8693 0.0079
boeck2019/multi_task 0.0000 1.0000 0.0503 0.6456 0.0000 0.0000 0.0000 0.0000 0.0027 0.0000 0.0000 0.0000 0.0000
boeck2019/multi_task_hjdb 0.0000 0.0503 1.0000 0.0763 0.0000 0.0000 0.0000 0.0000 0.0417 0.0000 0.0000 0.0000 0.0000
boeck2020/dar 0.0000 0.6456 0.0763 1.0000 0.0000 0.0000 0.0000 0.0000 0.0010 0.0000 0.0000 0.0000 0.0000
davies2009/mirex_qm_tempotracker 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
percival2014/stem 0.2863 0.0000 0.0000 0.0000 0.0000 1.0000 0.0112 0.0590 0.0000 0.1344 0.8895 0.0750 0.0583
schreiber2014/default 0.0096 0.0000 0.0000 0.0000 0.0000 0.0112 1.0000 0.6544 0.0004 0.0000 0.0626 0.0000 0.8546
schreiber2017/ismir2017 0.0223 0.0000 0.0000 0.0000 0.0000 0.0590 0.6544 1.0000 0.0000 0.0009 0.1842 0.0008 0.8450
schreiber2017/mirex2017 0.0000 0.0027 0.0417 0.0010 0.0000 0.0000 0.0004 0.0000 1.0000 0.0000 0.0000 0.0000 0.0004
schreiber2018/cnn 0.9936 0.0000 0.0000 0.0000 0.0000 0.1344 0.0000 0.0009 0.0000 1.0000 0.1067 0.7890 0.0003
schreiber2018/fcn 0.2140 0.0000 0.0000 0.0000 0.0000 0.8895 0.0626 0.1842 0.0000 0.1067 1.0000 0.0889 0.1089
schreiber2018/ismir2018 0.8693 0.0000 0.0000 0.0000 0.0000 0.0750 0.0000 0.0008 0.0000 0.7890 0.0889 1.0000 0.0001
sun2021/default 0.0079 0.0000 0.0000 0.0000 0.0000 0.0583 0.8546 0.8450 0.0004 0.0003 0.1089 0.0001 1.0000

Table 12: Paired t-test p-values, using reference annotations 2.0 as groundtruth with OE1. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.

CSV JSON LATEX PICKLE

Estimator boeck2015/tempodetector2016_default boeck2019/multi_task boeck2019/multi_task_hjdb boeck2020/dar davies2009/mirex_qm_tempotracker percival2014/stem schreiber2014/default schreiber2017/ismir2017 schreiber2017/mirex2017 schreiber2018/cnn schreiber2018/fcn schreiber2018/ismir2018 sun2021/default
boeck2015/tempodetector2016_default 1.0000 0.1528 0.0199 0.1502 0.0704 0.3036 0.0023 0.0073 0.0025 0.0780 0.0232 0.0246 0.1242
boeck2019/multi_task 0.1528 1.0000 0.1338 0.8793 0.0040 0.7484 0.1273 0.2260 0.1324 0.7146 0.3344 0.3444 0.9051
boeck2019/multi_task_hjdb 0.0199 0.1338 1.0000 0.1411 0.0003 0.2710 0.5852 0.7564 0.5938 0.6123 0.9750 0.8939 0.4168
boeck2020/dar 0.1502 0.8793 0.1411 1.0000 0.0054 0.8154 0.1277 0.2019 0.1258 0.6429 0.3037 0.2990 0.8280
davies2009/mirex_qm_tempotracker 0.0704 0.0040 0.0003 0.0054 1.0000 0.0398 0.0001 0.0003 0.0001 0.0069 0.0010 0.0013 0.0061
percival2014/stem 0.3036 0.7484 0.2710 0.8154 0.0398 1.0000 0.1258 0.1370 0.1046 0.4850 0.2493 0.2250 0.6576
schreiber2014/default 0.0023 0.1273 0.5852 0.1277 0.0001 0.1258 1.0000 0.7634 0.9600 0.2881 0.6110 0.7158 0.2204
schreiber2017/ismir2017 0.0073 0.2260 0.7564 0.2019 0.0003 0.1370 0.7634 1.0000 0.7408 0.4096 0.7819 0.8812 0.3274
schreiber2017/mirex2017 0.0025 0.1324 0.5938 0.1258 0.0001 0.1046 0.9600 0.7408 1.0000 0.3037 0.6335 0.7456 0.2253
schreiber2018/cnn 0.0780 0.7146 0.6123 0.6429 0.0069 0.4850 0.2881 0.4096 0.3037 1.0000 0.5390 0.5151 0.8235
schreiber2018/fcn 0.0232 0.3344 0.9750 0.3037 0.0010 0.2493 0.6110 0.7819 0.6335 0.5390 1.0000 0.9184 0.4696
schreiber2018/ismir2018 0.0246 0.3444 0.8939 0.2990 0.0013 0.2250 0.7158 0.8812 0.7456 0.5151 0.9184 1.0000 0.4052
sun2021/default 0.1242 0.9051 0.4168 0.8280 0.0061 0.6576 0.2204 0.3274 0.2253 0.8235 0.4696 0.4052 1.0000

Table 13: Paired t-test p-values, using reference annotations 1.0 as groundtruth with OE2. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.

CSV JSON LATEX PICKLE

Estimator boeck2015/tempodetector2016_default boeck2019/multi_task boeck2019/multi_task_hjdb boeck2020/dar davies2009/mirex_qm_tempotracker percival2014/stem schreiber2014/default schreiber2017/ismir2017 schreiber2017/mirex2017 schreiber2018/cnn schreiber2018/fcn schreiber2018/ismir2018 sun2021/default
boeck2015/tempodetector2016_default 1.0000 0.1528 0.0199 0.1502 0.0704 0.3036 0.0023 0.0073 0.0025 0.0780 0.0232 0.0246 0.1242
boeck2019/multi_task 0.1528 1.0000 0.1338 0.8793 0.0040 0.7484 0.1273 0.2260 0.1324 0.7146 0.3344 0.3444 0.9051
boeck2019/multi_task_hjdb 0.0199 0.1338 1.0000 0.1411 0.0003 0.2710 0.5852 0.7564 0.5938 0.6123 0.9750 0.8939 0.4168
boeck2020/dar 0.1502 0.8793 0.1411 1.0000 0.0054 0.8154 0.1277 0.2019 0.1258 0.6429 0.3037 0.2990 0.8280
davies2009/mirex_qm_tempotracker 0.0704 0.0040 0.0003 0.0054 1.0000 0.0398 0.0001 0.0003 0.0001 0.0069 0.0010 0.0013 0.0061
percival2014/stem 0.3036 0.7484 0.2710 0.8154 0.0398 1.0000 0.1258 0.1370 0.1046 0.4850 0.2493 0.2250 0.6576
schreiber2014/default 0.0023 0.1273 0.5852 0.1277 0.0001 0.1258 1.0000 0.7634 0.9600 0.2881 0.6110 0.7158 0.2204
schreiber2017/ismir2017 0.0073 0.2260 0.7564 0.2019 0.0003 0.1370 0.7634 1.0000 0.7408 0.4096 0.7819 0.8812 0.3274
schreiber2017/mirex2017 0.0025 0.1324 0.5938 0.1258 0.0001 0.1046 0.9600 0.7408 1.0000 0.3037 0.6335 0.7456 0.2253
schreiber2018/cnn 0.0780 0.7146 0.6123 0.6429 0.0069 0.4850 0.2881 0.4096 0.3037 1.0000 0.5390 0.5151 0.8235
schreiber2018/fcn 0.0232 0.3344 0.9750 0.3037 0.0010 0.2493 0.6110 0.7819 0.6335 0.5390 1.0000 0.9184 0.4696
schreiber2018/ismir2018 0.0246 0.3444 0.8939 0.2990 0.0013 0.2250 0.7158 0.8812 0.7456 0.5151 0.9184 1.0000 0.4052
sun2021/default 0.1242 0.9051 0.4168 0.8280 0.0061 0.6576 0.2204 0.3274 0.2253 0.8235 0.4696 0.4052 1.0000

Table 14: Paired t-test p-values, using reference annotations 2.0 as groundtruth with OE2. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.

CSV JSON LATEX PICKLE

OE1 on cvar-Subsets

How well does an estimator perform, when only taking tracks into account that have a cvar-value of less than τ, i.e., have a more or less stable beat?

OE1 on cvar-Subsets for 1.0 based on cvar-Values from 1.0

Figure 29: Mean OE1 compared to version 1.0 for tracks with cvar < τ based on beat annotations from 1.0.

CSV JSON LATEX PICKLE SVG PDF PNG

OE1 on cvar-Subsets for 2.0 based on cvar-Values from 1.0

Figure 30: Mean OE1 compared to version 2.0 for tracks with cvar < τ based on beat annotations from 2.0.

CSV JSON LATEX PICKLE SVG PDF PNG

OE2 on cvar-Subsets

How well does an estimator perform, when only taking tracks into account that have a cvar-value of less than τ, i.e., have a more or less stable beat?

OE2 on cvar-Subsets for 1.0 based on cvar-Values from 1.0

Figure 31: Mean OE2 compared to version 1.0 for tracks with cvar < τ based on beat annotations from 1.0.

CSV JSON LATEX PICKLE SVG PDF PNG

OE2 on cvar-Subsets for 2.0 based on cvar-Values from 1.0

Figure 32: Mean OE2 compared to version 2.0 for tracks with cvar < τ based on beat annotations from 2.0.

CSV JSON LATEX PICKLE SVG PDF PNG

OE1 on Tempo-Subsets

How well does an estimator perform, when only taking a subset of the reference annotations into account? The graphs show mean OE1 for reference subsets with tempi in [T-10,T+10] BPM. Note that the graphs do not show confidence intervals and that some values may be based on very few estimates.

OE1 on Tempo-Subsets for 1.0

Figure 33: Mean OE1 for estimates compared to version 1.0 for tempo intervals around T.

CSV JSON LATEX PICKLE SVG PDF PNG

OE1 on Tempo-Subsets for 2.0

Figure 34: Mean OE1 for estimates compared to version 2.0 for tempo intervals around T.

CSV JSON LATEX PICKLE SVG PDF PNG

OE2 on Tempo-Subsets

How well does an estimator perform, when only taking a subset of the reference annotations into account? The graphs show mean OE2 for reference subsets with tempi in [T-10,T+10] BPM. Note that the graphs do not show confidence intervals and that some values may be based on very few estimates.

OE2 on Tempo-Subsets for 1.0

Figure 35: Mean OE2 for estimates compared to version 1.0 for tempo intervals around T.

CSV JSON LATEX PICKLE SVG PDF PNG

OE2 on Tempo-Subsets for 2.0

Figure 36: Mean OE2 for estimates compared to version 2.0 for tempo intervals around T.

CSV JSON LATEX PICKLE SVG PDF PNG

Estimated OE1 for Tempo

When fitting a generalized additive model (GAM) to OE1-values and a ground truth, what OE1 can we expect with confidence?

Estimated OE1 for Tempo for 1.0

Predictions of GAMs trained on OE1 for estimates for reference 1.0.

Figure 37: OE1 predictions of a generalized additive model (GAM) fit to OE1 results for 1.0. The 95% confidence interval around the prediction is shaded in gray.

CSV JSON LATEX PICKLE SVG PDF PNG

Estimated OE1 for Tempo for 2.0

Predictions of GAMs trained on OE1 for estimates for reference 2.0.

Figure 38: OE1 predictions of a generalized additive model (GAM) fit to OE1 results for 2.0. The 95% confidence interval around the prediction is shaded in gray.

CSV JSON LATEX PICKLE SVG PDF PNG

Estimated OE2 for Tempo

When fitting a generalized additive model (GAM) to OE2-values and a ground truth, what OE2 can we expect with confidence?

Estimated OE2 for Tempo for 1.0

Predictions of GAMs trained on OE2 for estimates for reference 1.0.

Figure 39: OE2 predictions of a generalized additive model (GAM) fit to OE2 results for 1.0. The 95% confidence interval around the prediction is shaded in gray.

CSV JSON LATEX PICKLE SVG PDF PNG

Estimated OE2 for Tempo for 2.0

Predictions of GAMs trained on OE2 for estimates for reference 2.0.

Figure 40: OE2 predictions of a generalized additive model (GAM) fit to OE2 results for 2.0. The 95% confidence interval around the prediction is shaded in gray.

CSV JSON LATEX PICKLE SVG PDF PNG

OE1 for ‘tag_open’ Tags

How well does an estimator perform, when only taking tracks into account that are tagged with some kind of label? Note that some values may be based on very few estimates.

OE1 for ‘tag_open’ Tags for 1.0

Figure 41: OE1 of estimates compared to version 1.0 depending on tag from namespace ‘tag_open’.

SVG PDF PNG

OE1 for ‘tag_open’ Tags for 2.0

Figure 42: OE1 of estimates compared to version 2.0 depending on tag from namespace ‘tag_open’.

SVG PDF PNG

OE2 for ‘tag_open’ Tags

How well does an estimator perform, when only taking tracks into account that are tagged with some kind of label? Note that some values may be based on very few estimates.

OE2 for ‘tag_open’ Tags for 1.0

Figure 43: OE2 of estimates compared to version 1.0 depending on tag from namespace ‘tag_open’.

SVG PDF PNG

OE2 for ‘tag_open’ Tags for 2.0

Figure 44: OE2 of estimates compared to version 2.0 depending on tag from namespace ‘tag_open’.

SVG PDF PNG

AOE1 and AOE2

AOE1 is defined as absolute octave error between an estimate and a reference value: AOE1(E) = |log2(E/R)|.

AOE2 is the minimum of AOE1 allowing the octave errors 2, 3, 1/2, and 1/3: AOE2(E) = min(AOE1(E), AOE1(2E), AOE1(3E), AOE1(½E), AOE1(⅓E)).

Mean AOE1/AOE2 Results for 1.0

Estimator AOE1_MEAN AOE1_STDEV AOE2_MEAN AOE2_STDEV
boeck2020/dar 0.2893 0.4251 0.0748 0.1185
boeck2019/multi_task_hjdb 0.3661 0.4345 0.0949 0.1332
boeck2019/multi_task 0.3770 0.4435 0.0845 0.1208
sun2021/default 0.4101 0.4537 0.1285 0.1406
schreiber2017/mirex2017 0.4141 0.4880 0.1193 0.1497
schreiber2014/default 0.4576 0.4475 0.1268 0.1486
schreiber2018/fcn 0.4777 0.5018 0.1351 0.1552
schreiber2018/cnn 0.4820 0.4874 0.1272 0.1488
schreiber2017/ismir2017 0.4866 0.4676 0.1282 0.1529
boeck2015/tempodetector2016_default 0.5012 0.6025 0.0770 0.1262
schreiber2018/ismir2018 0.5014 0.4714 0.1546 0.1651
percival2014/stem 0.5055 0.4751 0.1464 0.1471
davies2009/mirex_qm_tempotracker 0.9124 0.6028 0.1675 0.1527

Table 15: Mean AOE1/AOE2 for estimates compared to version 1.0 ordered by mean.

CSV JSON LATEX PICKLE

Raw data AOE1: CSV JSON LATEX PICKLE

Raw data AOE2: CSV JSON LATEX PICKLE

AOE1 distribution for 1.0

Figure 45: AOE1 for estimates compared to version 1.0. Shown are the mean AOE1 and an empirical distribution of the sample, using kernel density estimation (KDE).

CSV JSON LATEX PICKLE SVG PDF PNG

AOE2 distribution for 1.0

Figure 46: AOE2 for estimates compared to version 1.0. Shown are the mean AOE2 and an empirical distribution of the sample, using kernel density estimation (KDE).

CSV JSON LATEX PICKLE SVG PDF PNG

Mean AOE1/AOE2 Results for 2.0

Estimator AOE1_MEAN AOE1_STDEV AOE2_MEAN AOE2_STDEV
boeck2020/dar 0.2894 0.4252 0.0746 0.1183
boeck2019/multi_task_hjdb 0.3662 0.4344 0.0951 0.1333
boeck2019/multi_task 0.3771 0.4434 0.0847 0.1208
sun2021/default 0.4102 0.4537 0.1286 0.1410
schreiber2017/mirex2017 0.4142 0.4881 0.1194 0.1496
schreiber2014/default 0.4577 0.4473 0.1270 0.1486
schreiber2018/fcn 0.4778 0.5018 0.1352 0.1554
schreiber2018/cnn 0.4821 0.4873 0.1273 0.1491
schreiber2017/ismir2017 0.4868 0.4678 0.1283 0.1528
boeck2015/tempodetector2016_default 0.5013 0.6026 0.0771 0.1263
schreiber2018/ismir2018 0.5016 0.4714 0.1548 0.1652
percival2014/stem 0.5056 0.4753 0.1466 0.1472
davies2009/mirex_qm_tempotracker 0.9126 0.6028 0.1677 0.1526

Table 16: Mean AOE1/AOE2 for estimates compared to version 2.0 ordered by mean.

CSV JSON LATEX PICKLE

Raw data AOE1: CSV JSON LATEX PICKLE

Raw data AOE2: CSV JSON LATEX PICKLE

AOE1 distribution for 2.0

Figure 47: AOE1 for estimates compared to version 2.0. Shown are the mean AOE1 and an empirical distribution of the sample, using kernel density estimation (KDE).

CSV JSON LATEX PICKLE SVG PDF PNG

AOE2 distribution for 2.0

Figure 48: AOE2 for estimates compared to version 2.0. Shown are the mean AOE2 and an empirical distribution of the sample, using kernel density estimation (KDE).

CSV JSON LATEX PICKLE SVG PDF PNG

Significance of Differences

Estimator boeck2015/tempodetector2016_default boeck2019/multi_task boeck2019/multi_task_hjdb boeck2020/dar davies2009/mirex_qm_tempotracker percival2014/stem schreiber2014/default schreiber2017/ismir2017 schreiber2017/mirex2017 schreiber2018/cnn schreiber2018/fcn schreiber2018/ismir2018 sun2021/default
boeck2015/tempodetector2016_default 1.0000 0.0076 0.0028 0.0000 0.0000 0.9178 0.3170 0.7240 0.0354 0.6262 0.5601 0.9953 0.0289
boeck2019/multi_task 0.0076 1.0000 0.5861 0.0017 0.0000 0.0002 0.0172 0.0015 0.2973 0.0074 0.0141 0.0015 0.3733
boeck2019/multi_task_hjdb 0.0028 0.5861 1.0000 0.0060 0.0000 0.0000 0.0033 0.0003 0.1626 0.0020 0.0055 0.0003 0.2166
boeck2020/dar 0.0000 0.0017 0.0060 1.0000 0.0000 0.0000 0.0000 0.0000 0.0007 0.0000 0.0000 0.0000 0.0011
davies2009/mirex_qm_tempotracker 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
percival2014/stem 0.9178 0.0002 0.0000 0.0000 0.0000 1.0000 0.0820 0.5074 0.0116 0.4472 0.4227 0.8909 0.0041
schreiber2014/default 0.3170 0.0172 0.0033 0.0000 0.0000 0.0820 1.0000 0.2737 0.2125 0.3601 0.5561 0.1023 0.1275
schreiber2017/ismir2017 0.7240 0.0015 0.0003 0.0000 0.0000 0.5074 0.2737 1.0000 0.0212 0.8765 0.8021 0.6343 0.0296
schreiber2017/mirex2017 0.0354 0.2973 0.1626 0.0007 0.0000 0.0116 0.2125 0.0212 1.0000 0.0651 0.1047 0.0199 0.9165
schreiber2018/cnn 0.6262 0.0074 0.0020 0.0000 0.0000 0.4472 0.3601 0.8765 0.0651 1.0000 0.8924 0.4249 0.0208
schreiber2018/fcn 0.5601 0.0141 0.0055 0.0000 0.0000 0.4227 0.5561 0.8021 0.1047 0.8924 1.0000 0.4833 0.0677
schreiber2018/ismir2018 0.9953 0.0015 0.0003 0.0000 0.0000 0.8909 0.1023 0.6343 0.0199 0.4249 0.4833 1.0000 0.0026
sun2021/default 0.0289 0.3733 0.2166 0.0011 0.0000 0.0041 0.1275 0.0296 0.9165 0.0208 0.0677 0.0026 1.0000

Table 17: Paired t-test p-values, using reference annotations 1.0 as groundtruth with AOE1. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.

CSV JSON LATEX PICKLE

Estimator boeck2015/tempodetector2016_default boeck2019/multi_task boeck2019/multi_task_hjdb boeck2020/dar davies2009/mirex_qm_tempotracker percival2014/stem schreiber2014/default schreiber2017/ismir2017 schreiber2017/mirex2017 schreiber2018/cnn schreiber2018/fcn schreiber2018/ismir2018 sun2021/default
boeck2015/tempodetector2016_default 1.0000 0.0076 0.0028 0.0000 0.0000 0.9176 0.3171 0.7242 0.0354 0.6264 0.5600 0.9936 0.0290
boeck2019/multi_task 0.0076 1.0000 0.5861 0.0017 0.0000 0.0002 0.0172 0.0015 0.2973 0.0074 0.0141 0.0015 0.3734
boeck2019/multi_task_hjdb 0.0028 0.5861 1.0000 0.0060 0.0000 0.0000 0.0033 0.0003 0.1625 0.0020 0.0055 0.0003 0.2167
boeck2020/dar 0.0000 0.0017 0.0060 1.0000 0.0000 0.0000 0.0000 0.0000 0.0006 0.0000 0.0000 0.0000 0.0011
davies2009/mirex_qm_tempotracker 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
percival2014/stem 0.9176 0.0002 0.0000 0.0000 0.0000 1.0000 0.0820 0.5074 0.0116 0.4472 0.4225 0.8931 0.0041
schreiber2014/default 0.3171 0.0172 0.0033 0.0000 0.0000 0.0820 1.0000 0.2737 0.2125 0.3601 0.5564 0.1016 0.1274
schreiber2017/ismir2017 0.7242 0.0015 0.0003 0.0000 0.0000 0.5074 0.2737 1.0000 0.0212 0.8765 0.8018 0.6325 0.0296
schreiber2017/mirex2017 0.0354 0.2973 0.1625 0.0006 0.0000 0.0116 0.2125 0.0212 1.0000 0.0651 0.1048 0.0197 0.9163
schreiber2018/cnn 0.6264 0.0074 0.0020 0.0000 0.0000 0.4472 0.3601 0.8765 0.0651 1.0000 0.8920 0.4229 0.0208
schreiber2018/fcn 0.5600 0.0141 0.0055 0.0000 0.0000 0.4225 0.5564 0.8018 0.1048 0.8920 1.0000 0.4814 0.0677
schreiber2018/ismir2018 0.9936 0.0015 0.0003 0.0000 0.0000 0.8931 0.1016 0.6325 0.0197 0.4229 0.4814 1.0000 0.0026
sun2021/default 0.0290 0.3734 0.2167 0.0011 0.0000 0.0041 0.1274 0.0296 0.9163 0.0208 0.0677 0.0026 1.0000

Table 18: Paired t-test p-values, using reference annotations 2.0 as groundtruth with AOE1. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.

CSV JSON LATEX PICKLE

Estimator boeck2015/tempodetector2016_default boeck2019/multi_task boeck2019/multi_task_hjdb boeck2020/dar davies2009/mirex_qm_tempotracker percival2014/stem schreiber2014/default schreiber2017/ismir2017 schreiber2017/mirex2017 schreiber2018/cnn schreiber2018/fcn schreiber2018/ismir2018 sun2021/default
boeck2015/tempodetector2016_default 1.0000 0.3943 0.0554 0.8077 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000
boeck2019/multi_task 0.3943 1.0000 0.1013 0.2022 0.0000 0.0000 0.0001 0.0002 0.0016 0.0004 0.0000 0.0000 0.0001
boeck2019/multi_task_hjdb 0.0554 0.1013 1.0000 0.0106 0.0000 0.0000 0.0034 0.0033 0.0223 0.0092 0.0010 0.0000 0.0031
boeck2020/dar 0.8077 0.2022 0.0106 1.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000
davies2009/mirex_qm_tempotracker 0.0000 0.0000 0.0000 0.0000 1.0000 0.0976 0.0017 0.0040 0.0004 0.0040 0.0180 0.3658 0.0031
percival2014/stem 0.0000 0.0000 0.0000 0.0000 0.0976 1.0000 0.1049 0.1364 0.0278 0.0621 0.3485 0.4708 0.1072
schreiber2014/default 0.0000 0.0001 0.0034 0.0000 0.0017 0.1049 1.0000 0.8844 0.4248 0.9787 0.5182 0.0339 0.8885
schreiber2017/ismir2017 0.0000 0.0002 0.0033 0.0000 0.0040 0.1364 0.8844 1.0000 0.1994 0.9303 0.5872 0.0303 0.9834
schreiber2017/mirex2017 0.0002 0.0016 0.0223 0.0001 0.0004 0.0278 0.4248 0.1994 1.0000 0.5222 0.2088 0.0042 0.4290
schreiber2018/cnn 0.0000 0.0004 0.0092 0.0000 0.0040 0.0621 0.9787 0.9303 0.5222 1.0000 0.4522 0.0026 0.9053
schreiber2018/fcn 0.0000 0.0000 0.0010 0.0000 0.0180 0.3485 0.5182 0.5872 0.2088 0.4522 1.0000 0.0664 0.5444
schreiber2018/ismir2018 0.0000 0.0000 0.0000 0.0000 0.3658 0.4708 0.0339 0.0303 0.0042 0.0026 0.0664 1.0000 0.0244
sun2021/default 0.0000 0.0001 0.0031 0.0000 0.0031 0.1072 0.8885 0.9834 0.4290 0.9053 0.5444 0.0244 1.0000

Table 19: Paired t-test p-values, using reference annotations 1.0 as groundtruth with AOE2. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.

CSV JSON LATEX PICKLE

Estimator boeck2015/tempodetector2016_default boeck2019/multi_task boeck2019/multi_task_hjdb boeck2020/dar davies2009/mirex_qm_tempotracker percival2014/stem schreiber2014/default schreiber2017/ismir2017 schreiber2017/mirex2017 schreiber2018/cnn schreiber2018/fcn schreiber2018/ismir2018 sun2021/default
boeck2015/tempodetector2016_default 1.0000 0.3906 0.0545 0.7859 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000
boeck2019/multi_task 0.3906 1.0000 0.1007 0.1872 0.0000 0.0000 0.0001 0.0002 0.0016 0.0004 0.0000 0.0000 0.0001
boeck2019/multi_task_hjdb 0.0545 0.1007 1.0000 0.0094 0.0000 0.0000 0.0034 0.0033 0.0227 0.0092 0.0011 0.0000 0.0031
boeck2020/dar 0.7859 0.1872 0.0094 1.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000
davies2009/mirex_qm_tempotracker 0.0000 0.0000 0.0000 0.0000 1.0000 0.0974 0.0017 0.0039 0.0003 0.0040 0.0178 0.3658 0.0031
percival2014/stem 0.0000 0.0000 0.0000 0.0000 0.0974 1.0000 0.1050 0.1352 0.0274 0.0622 0.3459 0.4702 0.1075
schreiber2014/default 0.0000 0.0001 0.0034 0.0000 0.0017 0.1050 1.0000 0.8904 0.4202 0.9788 0.5220 0.0338 0.8879
schreiber2017/ismir2017 0.0000 0.0002 0.0033 0.0000 0.0039 0.1352 0.8904 1.0000 0.1992 0.9349 0.5873 0.0299 0.9780
schreiber2017/mirex2017 0.0002 0.0016 0.0227 0.0001 0.0003 0.0274 0.4202 0.1992 1.0000 0.5184 0.2087 0.0041 0.4250
schreiber2018/cnn 0.0000 0.0004 0.0092 0.0000 0.0040 0.0622 0.9788 0.9349 0.5184 1.0000 0.4565 0.0026 0.9046
schreiber2018/fcn 0.0000 0.0000 0.0011 0.0000 0.0178 0.3459 0.5220 0.5873 0.2087 0.4565 1.0000 0.0655 0.5496
schreiber2018/ismir2018 0.0000 0.0000 0.0000 0.0000 0.3658 0.4702 0.0338 0.0299 0.0041 0.0026 0.0655 1.0000 0.0245
sun2021/default 0.0000 0.0001 0.0031 0.0000 0.0031 0.1075 0.8879 0.9780 0.4250 0.9046 0.5496 0.0245 1.0000

Table 20: Paired t-test p-values, using reference annotations 2.0 as groundtruth with AOE2. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.

CSV JSON LATEX PICKLE

AOE1 on cvar-Subsets

How well does an estimator perform, when only taking tracks into account that have a cvar-value of less than τ, i.e., have a more or less stable beat?

AOE1 on cvar-Subsets for 1.0 based on cvar-Values from 1.0

Figure 49: Mean AOE1 compared to version 1.0 for tracks with cvar < τ based on beat annotations from 1.0.

CSV JSON LATEX PICKLE SVG PDF PNG

AOE1 on cvar-Subsets for 2.0 based on cvar-Values from 1.0

Figure 50: Mean AOE1 compared to version 2.0 for tracks with cvar < τ based on beat annotations from 2.0.

CSV JSON LATEX PICKLE SVG PDF PNG

AOE2 on cvar-Subsets

How well does an estimator perform, when only taking tracks into account that have a cvar-value of less than τ, i.e., have a more or less stable beat?

AOE2 on cvar-Subsets for 1.0 based on cvar-Values from 1.0

Figure 51: Mean AOE2 compared to version 1.0 for tracks with cvar < τ based on beat annotations from 1.0.

CSV JSON LATEX PICKLE SVG PDF PNG

AOE2 on cvar-Subsets for 2.0 based on cvar-Values from 1.0

Figure 52: Mean AOE2 compared to version 2.0 for tracks with cvar < τ based on beat annotations from 2.0.

CSV JSON LATEX PICKLE SVG PDF PNG

AOE1 on Tempo-Subsets

How well does an estimator perform, when only taking a subset of the reference annotations into account? The graphs show mean AOE1 for reference subsets with tempi in [T-10,T+10] BPM. Note that the graphs do not show confidence intervals and that some values may be based on very few estimates.

AOE1 on Tempo-Subsets for 1.0

Figure 53: Mean AOE1 for estimates compared to version 1.0 for tempo intervals around T.

CSV JSON LATEX PICKLE SVG PDF PNG

AOE1 on Tempo-Subsets for 2.0

Figure 54: Mean AOE1 for estimates compared to version 2.0 for tempo intervals around T.

CSV JSON LATEX PICKLE SVG PDF PNG

AOE2 on Tempo-Subsets

How well does an estimator perform, when only taking a subset of the reference annotations into account? The graphs show mean AOE2 for reference subsets with tempi in [T-10,T+10] BPM. Note that the graphs do not show confidence intervals and that some values may be based on very few estimates.

AOE2 on Tempo-Subsets for 1.0

Figure 55: Mean AOE2 for estimates compared to version 1.0 for tempo intervals around T.

CSV JSON LATEX PICKLE SVG PDF PNG

AOE2 on Tempo-Subsets for 2.0

Figure 56: Mean AOE2 for estimates compared to version 2.0 for tempo intervals around T.

CSV JSON LATEX PICKLE SVG PDF PNG

Estimated AOE1 for Tempo

When fitting a generalized additive model (GAM) to AOE1-values and a ground truth, what AOE1 can we expect with confidence?

Estimated AOE1 for Tempo for 1.0

Predictions of GAMs trained on AOE1 for estimates for reference 1.0.

Figure 57: AOE1 predictions of a generalized additive model (GAM) fit to AOE1 results for 1.0. The 95% confidence interval around the prediction is shaded in gray.

CSV JSON LATEX PICKLE SVG PDF PNG

Estimated AOE1 for Tempo for 2.0

Predictions of GAMs trained on AOE1 for estimates for reference 2.0.

Figure 58: AOE1 predictions of a generalized additive model (GAM) fit to AOE1 results for 2.0. The 95% confidence interval around the prediction is shaded in gray.

CSV JSON LATEX PICKLE SVG PDF PNG

Estimated AOE2 for Tempo

When fitting a generalized additive model (GAM) to AOE2-values and a ground truth, what AOE2 can we expect with confidence?

Estimated AOE2 for Tempo for 1.0

Predictions of GAMs trained on AOE2 for estimates for reference 1.0.

Figure 59: AOE2 predictions of a generalized additive model (GAM) fit to AOE2 results for 1.0. The 95% confidence interval around the prediction is shaded in gray.

CSV JSON LATEX PICKLE SVG PDF PNG

Estimated AOE2 for Tempo for 2.0

Predictions of GAMs trained on AOE2 for estimates for reference 2.0.

Figure 60: AOE2 predictions of a generalized additive model (GAM) fit to AOE2 results for 2.0. The 95% confidence interval around the prediction is shaded in gray.

CSV JSON LATEX PICKLE SVG PDF PNG

AOE1 for ‘tag_open’ Tags

How well does an estimator perform, when only taking tracks into account that are tagged with some kind of label? Note that some values may be based on very few estimates.

AOE1 for ‘tag_open’ Tags for 1.0

Figure 61: AOE1 of estimates compared to version 1.0 depending on tag from namespace ‘tag_open’.

SVG PDF PNG

AOE1 for ‘tag_open’ Tags for 2.0

Figure 62: AOE1 of estimates compared to version 2.0 depending on tag from namespace ‘tag_open’.

SVG PDF PNG

AOE2 for ‘tag_open’ Tags

How well does an estimator perform, when only taking tracks into account that are tagged with some kind of label? Note that some values may be based on very few estimates.

AOE2 for ‘tag_open’ Tags for 1.0

Figure 63: AOE2 of estimates compared to version 1.0 depending on tag from namespace ‘tag_open’.

SVG PDF PNG

AOE2 for ‘tag_open’ Tags for 2.0

Figure 64: AOE2 of estimates compared to version 2.0 depending on tag from namespace ‘tag_open’.

SVG PDF PNG


Generated by tempo_eval 0.1.1 on 2022-06-29 18:57. Size L.