Skip to the content.

hjdb

This is the tempo_eval report for the ‘hjdb’ corpus.

Reports for other corpora may be found here.

Table of Contents

References for ‘hjdb’

References

1.0

Attribute Value
Corpus hjdb
Version 1.0
Curator Jason Hockman
Data Source manual annotation, GitHub repository of Sebastian Böck
Annotation Tools derived from beat annotations
Annotation Rules median of inter beat intervals
Annotator, bibtex Hockman2012
Annotator, ref_url https://github.com/superbock/ISMIR2019

2.0

Attribute Value
Corpus hjdb
Version 2.0
Curator Jason Hockman
Data Source manual annotation, GitHub repository of Sebastian Böck
Annotation Tools derived from beat annotations
Annotation Rules based on median of inter corresponding beat intervals
Annotator, bibtex Hockman2012
Annotator, ref_url https://github.com/superbock/ISMIR2019

3.0

Attribute Value
Corpus hjdb
Version 3.0
Curator Sebastian Böck
Data Source GitHub repository of Sebastian Böck
Annotation Tools unknown
Annotation Rules unknown
Annotator, bibtex Boeck2019
Annotator, ref_url https://github.com/superbock/ISMIR2019

Basic Statistics

Reference Size Min Max Avg Stdev Sweet Oct. Start Sweet Oct. Coverage
1.0 235 120.00 171.43 152.15 10.24 86.00 1.00
2.0 235 120.00 172.66 152.38 10.36 87.00 1.00
3.0 235 120.00 171.43 152.14 10.24 86.00 1.00

Table 1: Basic statistics.

CSV JSON LATEX PICKLE

Smoothed Tempo Distribution

Figure 1: Percentage of values in tempo interval.

CSV JSON LATEX PICKLE SVG PDF PNG

Beat-Based Tempo Variation

Figure 2: Fraction of the dataset with beat-annotated tracks with cvar < τ.

CSV JSON LATEX PICKLE SVG PDF PNG

Estimates for ‘hjdb’

Estimators

boeck2015/tempodetector2016_default

Attribute Value
Corpus hjdb
Version 0.17.dev0
Annotation Tools TempoDetector.2016, madmom, https://github.com/CPJKU/madmom
Annotator, bibtex Boeck2015

boeck2019/multi_task

Attribute Value
Corpus hjdb
Version 0.0.1
Annotation Tools model=multi_task, https://github.com/superbock/ISMIR2019
Annotator, bibtex Boeck2019

boeck2019/multi_task_hjdb

Attribute Value
Corpus hjdb
Version 0.0.1
Annotation Tools model=multi_task_hjdb, 8-fold cross validation, https://github.com/superbock/ISMIR2019
Annotator, bibtex Boeck2019

boeck2020/dar

Attribute Value
Corpus hjdb
Version 0.0.1
Annotation Tools https://github.com/superbock/ISMIR2020
Annotator, bibtex Boeck2020

davies2009/mirex_qm_tempotracker

Attribute Value  
Corpus hjdb  
Version 1.0  
Annotation Tools QM Tempotracker, Sonic Annotator plugin. https://code.soundsoftware.ac.uk/projects/mirex2013/repository/show/audio_tempo_estimation/qm-tempotracker Note that the current macOS build of ‘qm-vamp-plugins’ was used.  
Annotator, bibtex Davies2009 Davies2007

percival2014/stem

Attribute Value
Corpus hjdb
Version 1.0
Annotation Tools percival 2014, ‘tempo’ implementation from Marsyas, http://marsyas.info, git checkout tempo-stem
Annotator, bibtex Percival2014

schreiber2014/default

Attribute Value
Corpus hjdb
Version 0.0.1
Annotation Tools schreiber 2014, http://www.tagtraum.com/tempo_estimation.html
Annotator, bibtex Schreiber2014

schreiber2017/ismir2017

Attribute Value
Corpus hjdb
Version 0.0.4
Annotation Tools schreiber 2017, model=ismir2017, http://www.tagtraum.com/tempo_estimation.html
Annotator, bibtex Schreiber2017

schreiber2017/mirex2017

Attribute Value
Corpus hjdb
Version 0.0.4
Annotation Tools schreiber 2017, model=mirex2017, http://www.tagtraum.com/tempo_estimation.html
Annotator, bibtex Schreiber2017

schreiber2018/cnn

Attribute Value
Corpus hjdb
Version 0.0.4
Data Source Hendrik Schreiber, Meinard Müller. A Single-Step Approach to Musical Tempo Estimation Using a Convolutional Neural Network. In Proceedings of the 19th International Society for Music Information Retrieval Conference (ISMIR), Paris, France, Sept. 2018.
Annotation Tools schreiber tempo-cnn (model=cnn), https://github.com/hendriks73/tempo-cnn

schreiber2018/fcn

Attribute Value
Corpus hjdb
Version 0.0.4
Data Source Hendrik Schreiber, Meinard Müller. A Single-Step Approach to Musical Tempo Estimation Using a Convolutional Neural Network. In Proceedings of the 19th International Society for Music Information Retrieval Conference (ISMIR), Paris, France, Sept. 2018.
Annotation Tools schreiber tempo-cnn (model=fcn), https://github.com/hendriks73/tempo-cnn

schreiber2018/ismir2018

Attribute Value
Corpus hjdb
Version 0.0.4
Data Source Hendrik Schreiber, Meinard Müller. A Single-Step Approach to Musical Tempo Estimation Using a Convolutional Neural Network. In Proceedings of the 19th International Society for Music Information Retrieval Conference (ISMIR), Paris, France, Sept. 2018.
Annotation Tools schreiber tempo-cnn (model=ismir2018), https://github.com/hendriks73/tempo-cnn

Basic Statistics

Estimator Size Min Max Avg Stdev Sweet Oct. Start Sweet Oct. Coverage
boeck2015/tempodetector2016_default 236 42.55 171.43 146.62 22.57 86.00 0.93
boeck2019/multi_task 235 76.04 204.93 141.07 27.73 100.00 0.86
boeck2019/multi_task_hjdb 235 119.79 170.96 152.42 10.26 86.00 1.00
boeck2020/dar 235 120.26 172.58 151.71 10.03 87.00 1.00
davies2009/mirex_qm_tempotracker 236 71.78 166.71 125.27 30.86 79.00 0.82
percival2014/stem 236 69.84 159.63 96.34 29.52 70.00 0.83
schreiber2014/default 236 64.90 169.46 111.01 35.65 76.00 0.69
schreiber2017/ismir2017 236 69.00 167.18 120.13 34.81 75.00 0.70
schreiber2017/mirex2017 236 72.53 169.46 132.10 31.83 80.00 0.77
schreiber2018/cnn 236 77.00 170.00 148.10 19.45 85.00 0.95
schreiber2018/fcn 236 79.00 173.00 149.74 16.49 87.00 0.97
schreiber2018/ismir2018 236 77.00 176.00 145.80 22.31 85.00 0.92

Table 2: Basic statistics.

CSV JSON LATEX PICKLE

Smoothed Tempo Distribution

Figure 3: Percentage of values in tempo interval.

CSV JSON LATEX PICKLE SVG PDF PNG

Accuracy

Accuracy1 is defined as the percentage of correct estimates, allowing a 4% tolerance for individual BPM values.

Accuracy2 additionally permits estimates to be wrong by a factor of 2, 3, 1/2 or 1/3 (so-called octave errors).

See [Gouyon2006].

Note: When comparing accuracy values for different algorithms, keep in mind that an algorithm may have been trained on the test set or that the test set may have even been created using one of the tested algorithms.

Accuracy Results for 1.0

Estimator Accuracy1 Accuracy2
boeck2019/multi_task_hjdb 1.0000 1.0000
boeck2020/dar 0.9957 0.9957
schreiber2018/fcn 0.9660 1.0000
schreiber2018/cnn 0.9447 1.0000
boeck2015/tempodetector2016_default 0.9277 1.0000
schreiber2018/ismir2018 0.9064 0.9915
boeck2019/multi_task 0.8255 0.9617
schreiber2017/mirex2017 0.7404 0.9830
schreiber2017/ismir2017 0.5915 0.9830
davies2009/mirex_qm_tempotracker 0.5660 0.7872
schreiber2014/default 0.4638 0.9787
percival2014/stem 0.2851 1.0000

Table 3: Mean accuracy of estimates compared to version 1.0 with 4% tolerance ordered by Accuracy1.

CSV JSON LATEX PICKLE

Raw data Accuracy1: CSV JSON LATEX PICKLE

Raw data Accuracy2: CSV JSON LATEX PICKLE

Accuracy1 for 1.0

Figure 4: Mean Accuracy1 for estimates compared to version 1.0 depending on tolerance.

CSV JSON LATEX PICKLE SVG PDF PNG

Accuracy2 for 1.0

Figure 5: Mean Accuracy2 for estimates compared to version 1.0 depending on tolerance.

CSV JSON LATEX PICKLE SVG PDF PNG

Accuracy Results for 2.0

Estimator Accuracy1 Accuracy2
boeck2019/multi_task_hjdb 1.0000 1.0000
boeck2020/dar 0.9957 0.9957
schreiber2018/fcn 0.9660 1.0000
schreiber2018/cnn 0.9447 1.0000
boeck2015/tempodetector2016_default 0.9277 1.0000
schreiber2018/ismir2018 0.9064 0.9915
boeck2019/multi_task 0.8298 0.9660
schreiber2017/mirex2017 0.7404 0.9872
schreiber2017/ismir2017 0.5915 0.9872
davies2009/mirex_qm_tempotracker 0.5660 0.7872
schreiber2014/default 0.4681 0.9830
percival2014/stem 0.2851 1.0000

Table 4: Mean accuracy of estimates compared to version 2.0 with 4% tolerance ordered by Accuracy1.

CSV JSON LATEX PICKLE

Raw data Accuracy1: CSV JSON LATEX PICKLE

Raw data Accuracy2: CSV JSON LATEX PICKLE

Accuracy1 for 2.0

Figure 6: Mean Accuracy1 for estimates compared to version 2.0 depending on tolerance.

CSV JSON LATEX PICKLE SVG PDF PNG

Accuracy2 for 2.0

Figure 7: Mean Accuracy2 for estimates compared to version 2.0 depending on tolerance.

CSV JSON LATEX PICKLE SVG PDF PNG

Accuracy Results for 3.0

Estimator Accuracy1 Accuracy2
boeck2019/multi_task_hjdb 1.0000 1.0000
boeck2020/dar 0.9957 0.9957
schreiber2018/fcn 0.9660 1.0000
schreiber2018/cnn 0.9447 1.0000
boeck2015/tempodetector2016_default 0.9277 1.0000
schreiber2018/ismir2018 0.9064 0.9915
boeck2019/multi_task 0.8255 0.9617
schreiber2017/mirex2017 0.7404 0.9830
schreiber2017/ismir2017 0.5915 0.9830
davies2009/mirex_qm_tempotracker 0.5660 0.7872
schreiber2014/default 0.4638 0.9787
percival2014/stem 0.2851 1.0000

Table 5: Mean accuracy of estimates compared to version 3.0 with 4% tolerance ordered by Accuracy1.

CSV JSON LATEX PICKLE

Raw data Accuracy1: CSV JSON LATEX PICKLE

Raw data Accuracy2: CSV JSON LATEX PICKLE

Accuracy1 for 3.0

Figure 8: Mean Accuracy1 for estimates compared to version 3.0 depending on tolerance.

CSV JSON LATEX PICKLE SVG PDF PNG

Accuracy2 for 3.0

Figure 9: Mean Accuracy2 for estimates compared to version 3.0 depending on tolerance.

CSV JSON LATEX PICKLE SVG PDF PNG

Differing Items

For which items did a given estimator not estimate a correct value with respect to a given ground truth? Are there items which are either very difficult, not suitable for the task, or incorrectly annotated and therefore never estimated correctly, regardless which estimator is used?

Differing Items Accuracy1

Items with different tempo annotations (Accuracy1, 4% tolerance) in different versions:

1.0 compared with boeck2015/tempodetector2016_default (17 differences): ‘Being_With_You_(Foul_Play_Remix)’ ‘Champion_Sound’ ‘Champion_Sound_(Doc_Scott_Remix)’ ‘Dance_Factor’ ‘Here_Comes_The_Drumz_(Drumz_VIP_Mix)’ ‘Light_Years’ ‘NHS_(Midday_Mix)’ ‘Nightmare_Walking’ ‘Renegade_Snares_(Foul_Play_Remix)’ ‘Serious_Sounds’ ‘Spiritual_Aura’ … CSV

1.0 compared with boeck2019/multi_task (41 differences): ‘6_Million_Ways_To_Die_(DJ_Hype_Remix)’ ‘A_Musical_Box’ ‘A_New_Dawn’ ‘Being_With_You_1’ ‘Beyond_Bass’ ‘Breaking_Free_2’ ‘Casanova_(Down_To_Earth_Remix)’ ‘Chasin_A_Dream’ ‘Dark_Stranger_(Origin_Unknown_Remix)’ ‘Darkman’ ‘Devotion’ … CSV

1.0 compared with boeck2019/multi_task_hjdb: No differences.

1.0 compared with boeck2020/dar (1 differences): ‘Ruff!’ CSV

1.0 compared with davies2009/mirex_qm_tempotracker (102 differences): ‘A_Musical_Box’ ‘Aftershock’ ‘Being_With_You_(Foul_Play_Remix)’ ‘Beyond_Bass’ ‘Bouncing’ ‘Breakage4’ ‘Breaking_Free_2’ ‘Cant_Stop_Thinking_About’ ‘Champion_Sound’ ‘Cold_Fresh_Air_(Remix)’ ‘Come_Back_2_Me’ … CSV

1.0 compared with percival2014/stem (168 differences): ‘4_Am’ ‘6_Million_Ways_To_Die_(DJ_Hype_Remix)’ ‘A21’ ‘A_Musical_Box’ ‘Another_Direction’ ‘Being_With_You’ ‘Being_With_You_(Foul_Play_Remix)’ ‘Beyond_Bass’ ‘Bish_Bosh’ ‘Bouncing’ ‘Breakage4’ … CSV

1.0 compared with schreiber2014/default (126 differences): ‘2_Bad_Mice_Take_You’ ‘6_Million_Ways_To_Die_(DJ_Hype_Remix)’ ‘A_Musical_Box’ ‘A_New_Dawn’ ‘Alright_With_Me’ ‘Being_With_You’ ‘Being_With_You_1’ ‘Beyond_Bass’ ‘Breakage4’ ‘Cant_Stop_The_Rush_(93_Remix)’ ‘Cant_Stop_Thinking_About’ … CSV

1.0 compared with schreiber2017/ismir2017 (96 differences): ‘4_Am’ ‘6_Million_Ways_To_Die_(DJ_Hype_Remix)’ ‘A21’ ‘A_Musical_Box’ ‘A_New_Dawn’ ‘Being_With_You’ ‘Being_With_You_(Foul_Play_Remix)’ ‘Being_With_You_1’ ‘Beyond_Bass’ ‘Bouncing’ ‘Breakage4’ … CSV

1.0 compared with schreiber2017/mirex2017 (61 differences): ‘A_Musical_Box’ ‘Being_With_You’ ‘Being_With_You_(Foul_Play_Remix)’ ‘Beyond_Bass’ ‘Bouncing’ ‘Breakage4’ ‘Breaking_Free’ ‘Cant_Stop_The_Rush_(93_Remix)’ ‘Cant_Stop_Thinking_About’ ‘Casanova_(Down_To_Earth_Remix)’ ‘Champion_Sound’ … CSV

1.0 compared with schreiber2018/cnn (13 differences): ‘4_Am’ ‘Breakage4’ ‘Cant_Stop_Thinking_About’ ‘Devotion’ ‘Further_Intrigue’ ‘Last_Action_Hero’ ‘Open_Your_Mind’ ‘Rhythm’ ‘Rock_To_The_Groove’ ‘Sweet_Vibrations’ ‘The_Helicopter_Tune’ … CSV

1.0 compared with schreiber2018/fcn (8 differences): ‘Being_With_You_(Foul_Play_Remix)’ ‘Jump_Mk_II’ ‘No_Worries’ ‘Skanka’ ‘Something_I_Feel_(2_Bad_Mice_Remix)’ ‘Stay_Calm_(Foul_Play_Remix)’ ‘Sweet_Vibrations’ ‘Touch_Somebody’ CSV

1.0 compared with schreiber2018/ismir2018 (22 differences): ‘A_Musical_Box’ ‘Being_With_You’ ‘Being_With_You_1’ ‘Breakage4’ ‘Cant_Stop_Thinking_About’ ‘Chasin_A_Dream’ ‘Come_Back_2_Me’ ‘Fearless_Wonder_(Remix)’ ‘Fuckin_Hardcore’ ‘Hands_Of_Time’ ‘I_Need_Your_Lovin’ … CSV

2.0 compared with boeck2015/tempodetector2016_default (17 differences): ‘Being_With_You_(Foul_Play_Remix)’ ‘Champion_Sound’ ‘Champion_Sound_(Doc_Scott_Remix)’ ‘Dance_Factor’ ‘Here_Comes_The_Drumz_(Drumz_VIP_Mix)’ ‘Light_Years’ ‘NHS_(Midday_Mix)’ ‘Nightmare_Walking’ ‘Renegade_Snares_(Foul_Play_Remix)’ ‘Serious_Sounds’ ‘Spiritual_Aura’ … CSV

2.0 compared with boeck2019/multi_task (40 differences): ‘6_Million_Ways_To_Die_(DJ_Hype_Remix)’ ‘A_Musical_Box’ ‘A_New_Dawn’ ‘Being_With_You_1’ ‘Beyond_Bass’ ‘Breaking_Free_2’ ‘Casanova_(Down_To_Earth_Remix)’ ‘Chasin_A_Dream’ ‘Dark_Stranger_(Origin_Unknown_Remix)’ ‘Darkman’ ‘Devotion’ … CSV

2.0 compared with boeck2019/multi_task_hjdb: No differences.

2.0 compared with boeck2020/dar (1 differences): ‘Ruff!’ CSV

2.0 compared with davies2009/mirex_qm_tempotracker (102 differences): ‘A_Musical_Box’ ‘Aftershock’ ‘Being_With_You_(Foul_Play_Remix)’ ‘Beyond_Bass’ ‘Bouncing’ ‘Breakage4’ ‘Breaking_Free_2’ ‘Cant_Stop_Thinking_About’ ‘Champion_Sound’ ‘Cold_Fresh_Air_(Remix)’ ‘Come_Back_2_Me’ … CSV

2.0 compared with percival2014/stem (168 differences): ‘4_Am’ ‘6_Million_Ways_To_Die_(DJ_Hype_Remix)’ ‘A21’ ‘A_Musical_Box’ ‘Another_Direction’ ‘Being_With_You’ ‘Being_With_You_(Foul_Play_Remix)’ ‘Beyond_Bass’ ‘Bish_Bosh’ ‘Bouncing’ ‘Breakage4’ … CSV

2.0 compared with schreiber2014/default (125 differences): ‘2_Bad_Mice_Take_You’ ‘6_Million_Ways_To_Die_(DJ_Hype_Remix)’ ‘A_Musical_Box’ ‘A_New_Dawn’ ‘Alright_With_Me’ ‘Being_With_You’ ‘Being_With_You_1’ ‘Beyond_Bass’ ‘Breakage4’ ‘Cant_Stop_The_Rush_(93_Remix)’ ‘Cant_Stop_Thinking_About’ … CSV

2.0 compared with schreiber2017/ismir2017 (96 differences): ‘4_Am’ ‘6_Million_Ways_To_Die_(DJ_Hype_Remix)’ ‘A21’ ‘A_Musical_Box’ ‘A_New_Dawn’ ‘Being_With_You’ ‘Being_With_You_(Foul_Play_Remix)’ ‘Being_With_You_1’ ‘Beyond_Bass’ ‘Bouncing’ ‘Breakage4’ … CSV

2.0 compared with schreiber2017/mirex2017 (61 differences): ‘A_Musical_Box’ ‘Being_With_You’ ‘Being_With_You_(Foul_Play_Remix)’ ‘Beyond_Bass’ ‘Bouncing’ ‘Breakage4’ ‘Breaking_Free’ ‘Cant_Stop_The_Rush_(93_Remix)’ ‘Cant_Stop_Thinking_About’ ‘Casanova_(Down_To_Earth_Remix)’ ‘Champion_Sound’ … CSV

2.0 compared with schreiber2018/cnn (13 differences): ‘4_Am’ ‘Breakage4’ ‘Cant_Stop_Thinking_About’ ‘Devotion’ ‘Further_Intrigue’ ‘Last_Action_Hero’ ‘Open_Your_Mind’ ‘Rhythm’ ‘Rock_To_The_Groove’ ‘Sweet_Vibrations’ ‘The_Helicopter_Tune’ … CSV

2.0 compared with schreiber2018/fcn (8 differences): ‘Being_With_You_(Foul_Play_Remix)’ ‘Jump_Mk_II’ ‘No_Worries’ ‘Skanka’ ‘Something_I_Feel_(2_Bad_Mice_Remix)’ ‘Stay_Calm_(Foul_Play_Remix)’ ‘Sweet_Vibrations’ ‘Touch_Somebody’ CSV

2.0 compared with schreiber2018/ismir2018 (22 differences): ‘A_Musical_Box’ ‘Being_With_You’ ‘Being_With_You_1’ ‘Breakage4’ ‘Cant_Stop_Thinking_About’ ‘Chasin_A_Dream’ ‘Come_Back_2_Me’ ‘Fearless_Wonder_(Remix)’ ‘Fuckin_Hardcore’ ‘Hands_Of_Time’ ‘I_Need_Your_Lovin’ … CSV

3.0 compared with boeck2015/tempodetector2016_default (17 differences): ‘Being_With_You_(Foul_Play_Remix)’ ‘Champion_Sound’ ‘Champion_Sound_(Doc_Scott_Remix)’ ‘Dance_Factor’ ‘Here_Comes_The_Drumz_(Drumz_VIP_Mix)’ ‘Light_Years’ ‘NHS_(Midday_Mix)’ ‘Nightmare_Walking’ ‘Renegade_Snares_(Foul_Play_Remix)’ ‘Serious_Sounds’ ‘Spiritual_Aura’ … CSV

3.0 compared with boeck2019/multi_task (41 differences): ‘6_Million_Ways_To_Die_(DJ_Hype_Remix)’ ‘A_Musical_Box’ ‘A_New_Dawn’ ‘Being_With_You_1’ ‘Beyond_Bass’ ‘Breaking_Free_2’ ‘Casanova_(Down_To_Earth_Remix)’ ‘Chasin_A_Dream’ ‘Dark_Stranger_(Origin_Unknown_Remix)’ ‘Darkman’ ‘Devotion’ … CSV

3.0 compared with boeck2019/multi_task_hjdb: No differences.

3.0 compared with boeck2020/dar (1 differences): ‘Ruff!’ CSV

3.0 compared with davies2009/mirex_qm_tempotracker (102 differences): ‘A_Musical_Box’ ‘Aftershock’ ‘Being_With_You_(Foul_Play_Remix)’ ‘Beyond_Bass’ ‘Bouncing’ ‘Breakage4’ ‘Breaking_Free_2’ ‘Cant_Stop_Thinking_About’ ‘Champion_Sound’ ‘Cold_Fresh_Air_(Remix)’ ‘Come_Back_2_Me’ … CSV

3.0 compared with percival2014/stem (168 differences): ‘4_Am’ ‘6_Million_Ways_To_Die_(DJ_Hype_Remix)’ ‘A21’ ‘A_Musical_Box’ ‘Another_Direction’ ‘Being_With_You’ ‘Being_With_You_(Foul_Play_Remix)’ ‘Beyond_Bass’ ‘Bish_Bosh’ ‘Bouncing’ ‘Breakage4’ … CSV

3.0 compared with schreiber2014/default (126 differences): ‘2_Bad_Mice_Take_You’ ‘6_Million_Ways_To_Die_(DJ_Hype_Remix)’ ‘A_Musical_Box’ ‘A_New_Dawn’ ‘Alright_With_Me’ ‘Being_With_You’ ‘Being_With_You_1’ ‘Beyond_Bass’ ‘Breakage4’ ‘Cant_Stop_The_Rush_(93_Remix)’ ‘Cant_Stop_Thinking_About’ … CSV

3.0 compared with schreiber2017/ismir2017 (96 differences): ‘4_Am’ ‘6_Million_Ways_To_Die_(DJ_Hype_Remix)’ ‘A21’ ‘A_Musical_Box’ ‘A_New_Dawn’ ‘Being_With_You’ ‘Being_With_You_(Foul_Play_Remix)’ ‘Being_With_You_1’ ‘Beyond_Bass’ ‘Bouncing’ ‘Breakage4’ … CSV

3.0 compared with schreiber2017/mirex2017 (61 differences): ‘A_Musical_Box’ ‘Being_With_You’ ‘Being_With_You_(Foul_Play_Remix)’ ‘Beyond_Bass’ ‘Bouncing’ ‘Breakage4’ ‘Breaking_Free’ ‘Cant_Stop_The_Rush_(93_Remix)’ ‘Cant_Stop_Thinking_About’ ‘Casanova_(Down_To_Earth_Remix)’ ‘Champion_Sound’ … CSV

3.0 compared with schreiber2018/cnn (13 differences): ‘4_Am’ ‘Breakage4’ ‘Cant_Stop_Thinking_About’ ‘Devotion’ ‘Further_Intrigue’ ‘Last_Action_Hero’ ‘Open_Your_Mind’ ‘Rhythm’ ‘Rock_To_The_Groove’ ‘Sweet_Vibrations’ ‘The_Helicopter_Tune’ … CSV

3.0 compared with schreiber2018/fcn (8 differences): ‘Being_With_You_(Foul_Play_Remix)’ ‘Jump_Mk_II’ ‘No_Worries’ ‘Skanka’ ‘Something_I_Feel_(2_Bad_Mice_Remix)’ ‘Stay_Calm_(Foul_Play_Remix)’ ‘Sweet_Vibrations’ ‘Touch_Somebody’ CSV

3.0 compared with schreiber2018/ismir2018 (22 differences): ‘A_Musical_Box’ ‘Being_With_You’ ‘Being_With_You_1’ ‘Breakage4’ ‘Cant_Stop_Thinking_About’ ‘Chasin_A_Dream’ ‘Come_Back_2_Me’ ‘Fearless_Wonder_(Remix)’ ‘Fuckin_Hardcore’ ‘Hands_Of_Time’ ‘I_Need_Your_Lovin’ … CSV

All tracks were estimated ‘correctly’ by at least one system.

Differing Items Accuracy2

Items with different tempo annotations (Accuracy2, 4% tolerance) in different versions:

1.0 compared with boeck2015/tempodetector2016_default: No differences.

1.0 compared with boeck2019/multi_task (9 differences): ‘6_Million_Ways_To_Die_(DJ_Hype_Remix)’ ‘Dark_Stranger_(Origin_Unknown_Remix)’ ‘Devotion’ ‘Finest_Illusion_(Legal_Mix)’ ‘Promised_Land’ ‘T-N-T’ ‘The_Element_(Highnoon)’ ‘The_R’ ‘We_Are_Hardcore’ CSV

1.0 compared with boeck2019/multi_task_hjdb: No differences.

1.0 compared with boeck2020/dar (1 differences): ‘Ruff!’ CSV

1.0 compared with davies2009/mirex_qm_tempotracker (50 differences): ‘Being_With_You_(Foul_Play_Remix)’ ‘Breaking_Free_2’ ‘Cold_Fresh_Air_(Remix)’ ‘Come_Back_2_Me’ ‘Crystalize’ ‘Dream_Sequence’ ‘Enticer’ ‘Fearless_Wonder_(Remix)’ ‘Feel_(Feel_Good)’ ‘Finest_Illusion_(Legal_Mix)’ ‘Get_High_(New_Jack_London)’ … CSV

1.0 compared with percival2014/stem: No differences.

1.0 compared with schreiber2014/default (5 differences): ‘Cant_Stop_Thinking_About’ ‘Crystalize’ ‘Deep_Space’ ‘Horizons’ ‘My_Own_(Hixxy_and_UFO_Remix)’ CSV

1.0 compared with schreiber2017/ismir2017 (4 differences): ‘Crystalize’ ‘Deep_Space’ ‘Horizons’ ‘My_Own_(Hixxy_and_UFO_Remix)’ CSV

1.0 compared with schreiber2017/mirex2017 (4 differences): ‘Crystalize’ ‘Deep_Space’ ‘Horizons’ ‘My_Own_(Hixxy_and_UFO_Remix)’ CSV

1.0 compared with schreiber2018/cnn: No differences.

1.0 compared with schreiber2018/fcn: No differences.

1.0 compared with schreiber2018/ismir2018 (2 differences): ‘Fearless_Wonder_(Remix)’ ‘Inna_Year_4000’ CSV

2.0 compared with boeck2015/tempodetector2016_default: No differences.

2.0 compared with boeck2019/multi_task (8 differences): ‘6_Million_Ways_To_Die_(DJ_Hype_Remix)’ ‘Dark_Stranger_(Origin_Unknown_Remix)’ ‘Devotion’ ‘Promised_Land’ ‘T-N-T’ ‘The_Element_(Highnoon)’ ‘The_R’ ‘We_Are_Hardcore’ CSV

2.0 compared with boeck2019/multi_task_hjdb: No differences.

2.0 compared with boeck2020/dar (1 differences): ‘Ruff!’ CSV

2.0 compared with davies2009/mirex_qm_tempotracker (50 differences): ‘Being_With_You_(Foul_Play_Remix)’ ‘Breaking_Free_2’ ‘Cold_Fresh_Air_(Remix)’ ‘Come_Back_2_Me’ ‘Crystalize’ ‘Dream_Sequence’ ‘Enticer’ ‘Fearless_Wonder_(Remix)’ ‘Feel_(Feel_Good)’ ‘Finest_Illusion_(Legal_Mix)’ ‘Get_High_(New_Jack_London)’ … CSV

2.0 compared with percival2014/stem: No differences.

2.0 compared with schreiber2014/default (4 differences): ‘Cant_Stop_Thinking_About’ ‘Crystalize’ ‘Deep_Space’ ‘Horizons’ CSV

2.0 compared with schreiber2017/ismir2017 (3 differences): ‘Crystalize’ ‘Deep_Space’ ‘Horizons’ CSV

2.0 compared with schreiber2017/mirex2017 (3 differences): ‘Crystalize’ ‘Deep_Space’ ‘Horizons’ CSV

2.0 compared with schreiber2018/cnn: No differences.

2.0 compared with schreiber2018/fcn: No differences.

2.0 compared with schreiber2018/ismir2018 (2 differences): ‘Fearless_Wonder_(Remix)’ ‘Inna_Year_4000’ CSV

3.0 compared with boeck2015/tempodetector2016_default: No differences.

3.0 compared with boeck2019/multi_task (9 differences): ‘6_Million_Ways_To_Die_(DJ_Hype_Remix)’ ‘Dark_Stranger_(Origin_Unknown_Remix)’ ‘Devotion’ ‘Finest_Illusion_(Legal_Mix)’ ‘Promised_Land’ ‘T-N-T’ ‘The_Element_(Highnoon)’ ‘The_R’ ‘We_Are_Hardcore’ CSV

3.0 compared with boeck2019/multi_task_hjdb: No differences.

3.0 compared with boeck2020/dar (1 differences): ‘Ruff!’ CSV

3.0 compared with davies2009/mirex_qm_tempotracker (50 differences): ‘Being_With_You_(Foul_Play_Remix)’ ‘Breaking_Free_2’ ‘Cold_Fresh_Air_(Remix)’ ‘Come_Back_2_Me’ ‘Crystalize’ ‘Dream_Sequence’ ‘Enticer’ ‘Fearless_Wonder_(Remix)’ ‘Feel_(Feel_Good)’ ‘Finest_Illusion_(Legal_Mix)’ ‘Get_High_(New_Jack_London)’ … CSV

3.0 compared with percival2014/stem: No differences.

3.0 compared with schreiber2014/default (5 differences): ‘Cant_Stop_Thinking_About’ ‘Crystalize’ ‘Deep_Space’ ‘Horizons’ ‘My_Own_(Hixxy_and_UFO_Remix)’ CSV

3.0 compared with schreiber2017/ismir2017 (4 differences): ‘Crystalize’ ‘Deep_Space’ ‘Horizons’ ‘My_Own_(Hixxy_and_UFO_Remix)’ CSV

3.0 compared with schreiber2017/mirex2017 (4 differences): ‘Crystalize’ ‘Deep_Space’ ‘Horizons’ ‘My_Own_(Hixxy_and_UFO_Remix)’ CSV

3.0 compared with schreiber2018/cnn: No differences.

3.0 compared with schreiber2018/fcn: No differences.

3.0 compared with schreiber2018/ismir2018 (2 differences): ‘Fearless_Wonder_(Remix)’ ‘Inna_Year_4000’ CSV

All tracks were estimated ‘correctly’ by at least one system.

Significance of Differences

Estimator boeck2015/tempodetector2016_default boeck2019/multi_task boeck2019/multi_task_hjdb boeck2020/dar davies2009/mirex_qm_tempotracker percival2014/stem schreiber2014/default schreiber2017/ismir2017 schreiber2017/mirex2017 schreiber2018/cnn schreiber2018/fcn schreiber2018/ismir2018
boeck2015/tempodetector2016_default 1.0000 0.0018 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.5716 0.0931 0.5114
boeck2019/multi_task 0.0018 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0205 0.0001 0.0000 0.0110
boeck2019/multi_task_hjdb 0.0000 0.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0078 0.0000
boeck2020/dar 0.0001 0.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0018 0.0391 0.0000
davies2009/mirex_qm_tempotracker 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0153 0.5713 0.0000 0.0000 0.0000 0.0000
percival2014/stem 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
schreiber2014/default 0.0000 0.0000 0.0000 0.0000 0.0153 0.0000 1.0000 0.0020 0.0000 0.0000 0.0000 0.0000
schreiber2017/ismir2017 0.0000 0.0000 0.0000 0.0000 0.5713 0.0000 0.0020 1.0000 0.0000 0.0000 0.0000 0.0000
schreiber2017/mirex2017 0.0000 0.0205 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
schreiber2018/cnn 0.5716 0.0001 0.0002 0.0018 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.3593 0.1078
schreiber2018/fcn 0.0931 0.0000 0.0078 0.0391 0.0000 0.0000 0.0000 0.0000 0.0000 0.3593 1.0000 0.0043
schreiber2018/ismir2018 0.5114 0.0110 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1078 0.0043 1.0000

Table 6: McNemar p-values, using reference annotations 3.0 as groundtruth with Accuracy1 [Gouyon2006]. H0: both estimators disagree with the groundtruth to the same amount. If p<=ɑ, reject H0, i.e. we have a significant difference in the disagreement with the groundtruth. In the table, p-values<0.05 are set in bold.

CSV JSON LATEX PICKLE

Estimator boeck2015/tempodetector2016_default boeck2019/multi_task boeck2019/multi_task_hjdb boeck2020/dar davies2009/mirex_qm_tempotracker percival2014/stem schreiber2014/default schreiber2017/ismir2017 schreiber2017/mirex2017 schreiber2018/cnn schreiber2018/fcn schreiber2018/ismir2018
boeck2015/tempodetector2016_default 1.0000 0.0027 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.5716 0.0931 0.5114
boeck2019/multi_task 0.0027 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0154 0.0001 0.0000 0.0153
boeck2019/multi_task_hjdb 0.0000 0.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0078 0.0000
boeck2020/dar 0.0001 0.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0018 0.0391 0.0000
davies2009/mirex_qm_tempotracker 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0211 0.5713 0.0000 0.0000 0.0000 0.0000
percival2014/stem 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
schreiber2014/default 0.0000 0.0000 0.0000 0.0000 0.0211 0.0000 1.0000 0.0030 0.0000 0.0000 0.0000 0.0000
schreiber2017/ismir2017 0.0000 0.0000 0.0000 0.0000 0.5713 0.0000 0.0030 1.0000 0.0000 0.0000 0.0000 0.0000
schreiber2017/mirex2017 0.0000 0.0154 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
schreiber2018/cnn 0.5716 0.0001 0.0002 0.0018 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.3593 0.1078
schreiber2018/fcn 0.0931 0.0000 0.0078 0.0391 0.0000 0.0000 0.0000 0.0000 0.0000 0.3593 1.0000 0.0043
schreiber2018/ismir2018 0.5114 0.0153 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1078 0.0043 1.0000

Table 7: McNemar p-values, using reference annotations 2.0 as groundtruth with Accuracy1 [Gouyon2006]. H0: both estimators disagree with the groundtruth to the same amount. If p<=ɑ, reject H0, i.e. we have a significant difference in the disagreement with the groundtruth. In the table, p-values<0.05 are set in bold.

CSV JSON LATEX PICKLE

Estimator boeck2015/tempodetector2016_default boeck2019/multi_task boeck2019/multi_task_hjdb boeck2020/dar davies2009/mirex_qm_tempotracker percival2014/stem schreiber2014/default schreiber2017/ismir2017 schreiber2017/mirex2017 schreiber2018/cnn schreiber2018/fcn schreiber2018/ismir2018
boeck2015/tempodetector2016_default 1.0000 0.0018 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.5716 0.0931 0.5114
boeck2019/multi_task 0.0018 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0205 0.0001 0.0000 0.0110
boeck2019/multi_task_hjdb 0.0000 0.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0078 0.0000
boeck2020/dar 0.0001 0.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0018 0.0391 0.0000
davies2009/mirex_qm_tempotracker 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0153 0.5713 0.0000 0.0000 0.0000 0.0000
percival2014/stem 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
schreiber2014/default 0.0000 0.0000 0.0000 0.0000 0.0153 0.0000 1.0000 0.0020 0.0000 0.0000 0.0000 0.0000
schreiber2017/ismir2017 0.0000 0.0000 0.0000 0.0000 0.5713 0.0000 0.0020 1.0000 0.0000 0.0000 0.0000 0.0000
schreiber2017/mirex2017 0.0000 0.0205 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
schreiber2018/cnn 0.5716 0.0001 0.0002 0.0018 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.3593 0.1078
schreiber2018/fcn 0.0931 0.0000 0.0078 0.0391 0.0000 0.0000 0.0000 0.0000 0.0000 0.3593 1.0000 0.0043
schreiber2018/ismir2018 0.5114 0.0110 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1078 0.0043 1.0000

Table 8: McNemar p-values, using reference annotations 1.0 as groundtruth with Accuracy1 [Gouyon2006]. H0: both estimators disagree with the groundtruth to the same amount. If p<=ɑ, reject H0, i.e. we have a significant difference in the disagreement with the groundtruth. In the table, p-values<0.05 are set in bold.

CSV JSON LATEX PICKLE

Estimator boeck2015/tempodetector2016_default boeck2019/multi_task boeck2019/multi_task_hjdb boeck2020/dar davies2009/mirex_qm_tempotracker percival2014/stem schreiber2014/default schreiber2017/ismir2017 schreiber2017/mirex2017 schreiber2018/cnn schreiber2018/fcn schreiber2018/ismir2018
boeck2015/tempodetector2016_default 1.0000 0.0039 1.0000 1.0000 0.0000 1.0000 0.0625 0.1250 0.1250 1.0000 1.0000 0.5000
boeck2019/multi_task 0.0039 1.0000 0.0039 0.0215 0.0000 0.0039 0.4240 0.2668 0.2668 0.0039 0.0039 0.0654
boeck2019/multi_task_hjdb 1.0000 0.0039 1.0000 1.0000 0.0000 1.0000 0.0625 0.1250 0.1250 1.0000 1.0000 0.5000
boeck2020/dar 1.0000 0.0215 1.0000 1.0000 0.0000 1.0000 0.2188 0.3750 0.3750 1.0000 1.0000 1.0000
davies2009/mirex_qm_tempotracker 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
percival2014/stem 1.0000 0.0039 1.0000 1.0000 0.0000 1.0000 0.0625 0.1250 0.1250 1.0000 1.0000 0.5000
schreiber2014/default 0.0625 0.4240 0.0625 0.2188 0.0000 0.0625 1.0000 1.0000 1.0000 0.0625 0.0625 0.4531
schreiber2017/ismir2017 0.1250 0.2668 0.1250 0.3750 0.0000 0.1250 1.0000 1.0000 1.0000 0.1250 0.1250 0.6875
schreiber2017/mirex2017 0.1250 0.2668 0.1250 0.3750 0.0000 0.1250 1.0000 1.0000 1.0000 0.1250 0.1250 0.6875
schreiber2018/cnn 1.0000 0.0039 1.0000 1.0000 0.0000 1.0000 0.0625 0.1250 0.1250 1.0000 1.0000 0.5000
schreiber2018/fcn 1.0000 0.0039 1.0000 1.0000 0.0000 1.0000 0.0625 0.1250 0.1250 1.0000 1.0000 0.5000
schreiber2018/ismir2018 0.5000 0.0654 0.5000 1.0000 0.0000 0.5000 0.4531 0.6875 0.6875 0.5000 0.5000 1.0000

Table 9: McNemar p-values, using reference annotations 3.0 as groundtruth with Accuracy2 [Gouyon2006]. H0: both estimators disagree with the groundtruth to the same amount. If p<=ɑ, reject H0, i.e. we have a significant difference in the disagreement with the groundtruth. In the table, p-values<0.05 are set in bold.

CSV JSON LATEX PICKLE

Estimator boeck2015/tempodetector2016_default boeck2019/multi_task boeck2019/multi_task_hjdb boeck2020/dar davies2009/mirex_qm_tempotracker percival2014/stem schreiber2014/default schreiber2017/ismir2017 schreiber2017/mirex2017 schreiber2018/cnn schreiber2018/fcn schreiber2018/ismir2018
boeck2015/tempodetector2016_default 1.0000 0.0078 1.0000 1.0000 0.0000 1.0000 0.1250 0.2500 0.2500 1.0000 1.0000 0.5000
boeck2019/multi_task 0.0078 1.0000 0.0078 0.0391 0.0000 0.0078 0.3877 0.2266 0.2266 0.0078 0.0078 0.1094
boeck2019/multi_task_hjdb 1.0000 0.0078 1.0000 1.0000 0.0000 1.0000 0.1250 0.2500 0.2500 1.0000 1.0000 0.5000
boeck2020/dar 1.0000 0.0391 1.0000 1.0000 0.0000 1.0000 0.3750 0.6250 0.6250 1.0000 1.0000 1.0000
davies2009/mirex_qm_tempotracker 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
percival2014/stem 1.0000 0.0078 1.0000 1.0000 0.0000 1.0000 0.1250 0.2500 0.2500 1.0000 1.0000 0.5000
schreiber2014/default 0.1250 0.3877 0.1250 0.3750 0.0000 0.1250 1.0000 1.0000 1.0000 0.1250 0.1250 0.6875
schreiber2017/ismir2017 0.2500 0.2266 0.2500 0.6250 0.0000 0.2500 1.0000 1.0000 1.0000 0.2500 0.2500 1.0000
schreiber2017/mirex2017 0.2500 0.2266 0.2500 0.6250 0.0000 0.2500 1.0000 1.0000 1.0000 0.2500 0.2500 1.0000
schreiber2018/cnn 1.0000 0.0078 1.0000 1.0000 0.0000 1.0000 0.1250 0.2500 0.2500 1.0000 1.0000 0.5000
schreiber2018/fcn 1.0000 0.0078 1.0000 1.0000 0.0000 1.0000 0.1250 0.2500 0.2500 1.0000 1.0000 0.5000
schreiber2018/ismir2018 0.5000 0.1094 0.5000 1.0000 0.0000 0.5000 0.6875 1.0000 1.0000 0.5000 0.5000 1.0000

Table 10: McNemar p-values, using reference annotations 2.0 as groundtruth with Accuracy2 [Gouyon2006]. H0: both estimators disagree with the groundtruth to the same amount. If p<=ɑ, reject H0, i.e. we have a significant difference in the disagreement with the groundtruth. In the table, p-values<0.05 are set in bold.

CSV JSON LATEX PICKLE

Estimator boeck2015/tempodetector2016_default boeck2019/multi_task boeck2019/multi_task_hjdb boeck2020/dar davies2009/mirex_qm_tempotracker percival2014/stem schreiber2014/default schreiber2017/ismir2017 schreiber2017/mirex2017 schreiber2018/cnn schreiber2018/fcn schreiber2018/ismir2018
boeck2015/tempodetector2016_default 1.0000 0.0039 1.0000 1.0000 0.0000 1.0000 0.0625 0.1250 0.1250 1.0000 1.0000 0.5000
boeck2019/multi_task 0.0039 1.0000 0.0039 0.0215 0.0000 0.0039 0.4240 0.2668 0.2668 0.0039 0.0039 0.0654
boeck2019/multi_task_hjdb 1.0000 0.0039 1.0000 1.0000 0.0000 1.0000 0.0625 0.1250 0.1250 1.0000 1.0000 0.5000
boeck2020/dar 1.0000 0.0215 1.0000 1.0000 0.0000 1.0000 0.2188 0.3750 0.3750 1.0000 1.0000 1.0000
davies2009/mirex_qm_tempotracker 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
percival2014/stem 1.0000 0.0039 1.0000 1.0000 0.0000 1.0000 0.0625 0.1250 0.1250 1.0000 1.0000 0.5000
schreiber2014/default 0.0625 0.4240 0.0625 0.2188 0.0000 0.0625 1.0000 1.0000 1.0000 0.0625 0.0625 0.4531
schreiber2017/ismir2017 0.1250 0.2668 0.1250 0.3750 0.0000 0.1250 1.0000 1.0000 1.0000 0.1250 0.1250 0.6875
schreiber2017/mirex2017 0.1250 0.2668 0.1250 0.3750 0.0000 0.1250 1.0000 1.0000 1.0000 0.1250 0.1250 0.6875
schreiber2018/cnn 1.0000 0.0039 1.0000 1.0000 0.0000 1.0000 0.0625 0.1250 0.1250 1.0000 1.0000 0.5000
schreiber2018/fcn 1.0000 0.0039 1.0000 1.0000 0.0000 1.0000 0.0625 0.1250 0.1250 1.0000 1.0000 0.5000
schreiber2018/ismir2018 0.5000 0.0654 0.5000 1.0000 0.0000 0.5000 0.4531 0.6875 0.6875 0.5000 0.5000 1.0000

Table 11: McNemar p-values, using reference annotations 1.0 as groundtruth with Accuracy2 [Gouyon2006]. H0: both estimators disagree with the groundtruth to the same amount. If p<=ɑ, reject H0, i.e. we have a significant difference in the disagreement with the groundtruth. In the table, p-values<0.05 are set in bold.

CSV JSON LATEX PICKLE

Accuracy1 on cvar-Subsets

How well does an estimator perform, when only taking tracks into account that have a cvar-value of less than τ, i.e., have a more or less stable beat?

Accuracy1 on cvar-Subsets for 1.0 based on cvar-Values from 1.0

Figure 10: Mean Accuracy1 compared to version 1.0 for tracks with cvar < τ based on beat annotations from 1.0.

CSV JSON LATEX PICKLE SVG PDF PNG

Accuracy1 on cvar-Subsets for 2.0 based on cvar-Values from 1.0

Figure 11: Mean Accuracy1 compared to version 2.0 for tracks with cvar < τ based on beat annotations from 2.0.

CSV JSON LATEX PICKLE SVG PDF PNG

Accuracy1 on cvar-Subsets for 3.0 based on cvar-Values from 1.0

Figure 12: Mean Accuracy1 compared to version 3.0 for tracks with cvar < τ based on beat annotations from 3.0.

CSV JSON LATEX PICKLE SVG PDF PNG

Accuracy2 on cvar-Subsets

How well does an estimator perform, when only taking tracks into account that have a cvar-value of less than τ, i.e., have a more or less stable beat?

Accuracy2 on cvar-Subsets for 1.0 based on cvar-Values from 1.0

Figure 13: Mean Accuracy2 compared to version 1.0 for tracks with cvar < τ based on beat annotations from 1.0.

CSV JSON LATEX PICKLE SVG PDF PNG

Accuracy2 on cvar-Subsets for 2.0 based on cvar-Values from 1.0

Figure 14: Mean Accuracy2 compared to version 2.0 for tracks with cvar < τ based on beat annotations from 2.0.

CSV JSON LATEX PICKLE SVG PDF PNG

Accuracy2 on cvar-Subsets for 3.0 based on cvar-Values from 1.0

Figure 15: Mean Accuracy2 compared to version 3.0 for tracks with cvar < τ based on beat annotations from 3.0.

CSV JSON LATEX PICKLE SVG PDF PNG

Accuracy1 on Tempo-Subsets

How well does an estimator perform, when only taking a subset of the reference annotations into account? The graphs show mean Accuracy1 for reference subsets with tempi in [T-10,T+10] BPM. Note that the graphs do not show confidence intervals and that some values may be based on very few estimates.

Accuracy1 on Tempo-Subsets for 1.0

Figure 16: Mean Accuracy1 for estimates compared to version 1.0 for tempo intervals around T.

CSV JSON LATEX PICKLE SVG PDF PNG

Accuracy1 on Tempo-Subsets for 2.0

Figure 17: Mean Accuracy1 for estimates compared to version 2.0 for tempo intervals around T.

CSV JSON LATEX PICKLE SVG PDF PNG

Accuracy1 on Tempo-Subsets for 3.0

Figure 18: Mean Accuracy1 for estimates compared to version 3.0 for tempo intervals around T.

CSV JSON LATEX PICKLE SVG PDF PNG

Accuracy2 on Tempo-Subsets

How well does an estimator perform, when only taking a subset of the reference annotations into account? The graphs show mean Accuracy2 for reference subsets with tempi in [T-10,T+10] BPM. Note that the graphs do not show confidence intervals and that some values may be based on very few estimates.

Accuracy2 on Tempo-Subsets for 1.0

Figure 19: Mean Accuracy2 for estimates compared to version 1.0 for tempo intervals around T.

CSV JSON LATEX PICKLE SVG PDF PNG

Accuracy2 on Tempo-Subsets for 2.0

Figure 20: Mean Accuracy2 for estimates compared to version 2.0 for tempo intervals around T.

CSV JSON LATEX PICKLE SVG PDF PNG

Accuracy2 on Tempo-Subsets for 3.0

Figure 21: Mean Accuracy2 for estimates compared to version 3.0 for tempo intervals around T.

CSV JSON LATEX PICKLE SVG PDF PNG

Estimated Accuracy1 for Tempo

When fitting a generalized additive model (GAM) to Accuracy1-values and a ground truth, what Accuracy1 can we expect with confidence?

Estimated Accuracy1 for Tempo for 1.0

Predictions of GAMs trained on Accuracy1 for estimates for reference 1.0.

Figure 22: Accuracy1 predictions of a generalized additive model (GAM) fit to Accuracy1 results for 1.0. The 95% confidence interval around the prediction is shaded in gray.

CSV JSON LATEX PICKLE SVG PDF PNG

Estimated Accuracy1 for Tempo for 2.0

Predictions of GAMs trained on Accuracy1 for estimates for reference 2.0.

Figure 23: Accuracy1 predictions of a generalized additive model (GAM) fit to Accuracy1 results for 2.0. The 95% confidence interval around the prediction is shaded in gray.

CSV JSON LATEX PICKLE SVG PDF PNG

Estimated Accuracy1 for Tempo for 3.0

Predictions of GAMs trained on Accuracy1 for estimates for reference 3.0.

Figure 24: Accuracy1 predictions of a generalized additive model (GAM) fit to Accuracy1 results for 3.0. The 95% confidence interval around the prediction is shaded in gray.

CSV JSON LATEX PICKLE SVG PDF PNG

Estimated Accuracy2 for Tempo

When fitting a generalized additive model (GAM) to Accuracy2-values and a ground truth, what Accuracy2 can we expect with confidence?

Estimated Accuracy2 for Tempo for 1.0

Predictions of GAMs trained on Accuracy2 for estimates for reference 1.0.

Figure 25: Accuracy2 predictions of a generalized additive model (GAM) fit to Accuracy2 results for 1.0. The 95% confidence interval around the prediction is shaded in gray.

CSV JSON LATEX PICKLE SVG PDF PNG

Estimated Accuracy2 for Tempo for 2.0

Predictions of GAMs trained on Accuracy2 for estimates for reference 2.0.

Figure 26: Accuracy2 predictions of a generalized additive model (GAM) fit to Accuracy2 results for 2.0. The 95% confidence interval around the prediction is shaded in gray.

CSV JSON LATEX PICKLE SVG PDF PNG

Estimated Accuracy2 for Tempo for 3.0

Predictions of GAMs trained on Accuracy2 for estimates for reference 3.0.

Figure 27: Accuracy2 predictions of a generalized additive model (GAM) fit to Accuracy2 results for 3.0. The 95% confidence interval around the prediction is shaded in gray.

CSV JSON LATEX PICKLE SVG PDF PNG

OE1 and OE2

OE1 is defined as octave error between an estimate E and a reference value R.This means that the most common errors—by a factor of 2 or ½—have the same magnitude, namely 1: OE2(E) = log2(E/R).

OE2 is the signed OE1 corresponding to the minimum absolute OE1 allowing the octaveerrors 2, 3, 1/2, and 1/3: OE2(E) = arg minx(|x|) with x ∈ {OE1(E), OE1(2E), OE1(3E), OE1(½E), OE1(⅓E)}

Mean OE1/OE2 Results for 1.0

Estimator OE1_MEAN OE1_STDEV OE2_MEAN OE2_STDEV
boeck2019/multi_task_hjdb 0.0025 0.0106 0.0025 0.0106
boeck2020/dar -0.0041 0.0107 -0.0041 0.0107
schreiber2018/fcn -0.0312 0.1793 0.0029 0.0113
schreiber2018/cnn -0.0525 0.2286 0.0029 0.0111
boeck2015/tempodetector2016_default -0.0748 0.2705 0.0000 0.0077
schreiber2018/ismir2018 -0.0809 0.2805 0.0042 0.0205
boeck2019/multi_task -0.1413 0.3502 0.0034 0.0740
davies2009/mirex_qm_tempotracker -0.3228 0.4197 0.1027 0.1694
schreiber2017/mirex2017 -0.2529 0.4327 0.0024 0.0414
percival2014/stem -0.7131 0.4507 0.0018 0.0105
schreiber2017/ismir2017 -0.4019 0.4877 0.0024 0.0414
schreiber2014/default -0.5290 0.4968 0.0029 0.0332

Table 12: Mean OE1/OE2 for estimates compared to version 1.0 ordered by standard deviation.

CSV JSON LATEX PICKLE

Raw data OE1: CSV JSON LATEX PICKLE

Raw data OE2: CSV JSON LATEX PICKLE

OE1 distribution for 1.0

Figure 28: OE1 for estimates compared to version 1.0. Shown are the mean OE1 and an empirical distribution of the sample, using kernel density estimation (KDE).

CSV JSON LATEX PICKLE SVG PDF PNG

OE2 distribution for 1.0

Figure 29: OE2 for estimates compared to version 1.0. Shown are the mean OE2 and an empirical distribution of the sample, using kernel density estimation (KDE).

CSV JSON LATEX PICKLE SVG PDF PNG

Mean OE1/OE2 Results for 2.0

Estimator OE1_MEAN OE1_STDEV OE2_MEAN OE2_STDEV
boeck2019/multi_task_hjdb 0.0005 0.0036 0.0005 0.0036
boeck2020/dar -0.0061 0.0053 -0.0061 0.0053
schreiber2018/fcn -0.0332 0.1809 0.0008 0.0044
schreiber2018/cnn -0.0545 0.2290 0.0008 0.0039
boeck2015/tempodetector2016_default -0.0768 0.2701 -0.0020 0.0105
schreiber2018/ismir2018 -0.0829 0.2800 0.0022 0.0174
boeck2019/multi_task -0.1433 0.3518 0.0013 0.0729
davies2009/mirex_qm_tempotracker -0.3248 0.4213 0.1007 0.1696
schreiber2017/mirex2017 -0.2550 0.4325 0.0004 0.0404
percival2014/stem -0.7152 0.4519 -0.0003 0.0029
schreiber2017/ismir2017 -0.4039 0.4880 0.0004 0.0404
schreiber2014/default -0.5310 0.4986 0.0009 0.0319

Table 13: Mean OE1/OE2 for estimates compared to version 2.0 ordered by standard deviation.

CSV JSON LATEX PICKLE

Raw data OE1: CSV JSON LATEX PICKLE

Raw data OE2: CSV JSON LATEX PICKLE

OE1 distribution for 2.0

Figure 30: OE1 for estimates compared to version 2.0. Shown are the mean OE1 and an empirical distribution of the sample, using kernel density estimation (KDE).

CSV JSON LATEX PICKLE SVG PDF PNG

OE2 distribution for 2.0

Figure 31: OE2 for estimates compared to version 2.0. Shown are the mean OE2 and an empirical distribution of the sample, using kernel density estimation (KDE).

CSV JSON LATEX PICKLE SVG PDF PNG

Mean OE1/OE2 Results for 3.0

Estimator OE1_MEAN OE1_STDEV OE2_MEAN OE2_STDEV
boeck2020/dar -0.0039 0.0107 -0.0039 0.0107
boeck2019/multi_task_hjdb 0.0027 0.0107 0.0027 0.0107
schreiber2018/fcn -0.0310 0.1793 0.0030 0.0113
schreiber2018/cnn -0.0523 0.2287 0.0030 0.0112
boeck2015/tempodetector2016_default -0.0746 0.2706 0.0002 0.0075
schreiber2018/ismir2018 -0.0807 0.2805 0.0044 0.0205
boeck2019/multi_task -0.1412 0.3503 0.0035 0.0740
davies2009/mirex_qm_tempotracker -0.3226 0.4197 0.1029 0.1695
schreiber2017/mirex2017 -0.2528 0.4330 0.0026 0.0413
percival2014/stem -0.7130 0.4505 0.0019 0.0106
schreiber2017/ismir2017 -0.4017 0.4878 0.0026 0.0413
schreiber2014/default -0.5288 0.4968 0.0031 0.0332

Table 14: Mean OE1/OE2 for estimates compared to version 3.0 ordered by standard deviation.

CSV JSON LATEX PICKLE

Raw data OE1: CSV JSON LATEX PICKLE

Raw data OE2: CSV JSON LATEX PICKLE

OE1 distribution for 3.0

Figure 32: OE1 for estimates compared to version 3.0. Shown are the mean OE1 and an empirical distribution of the sample, using kernel density estimation (KDE).

CSV JSON LATEX PICKLE SVG PDF PNG

OE2 distribution for 3.0

Figure 33: OE2 for estimates compared to version 3.0. Shown are the mean OE2 and an empirical distribution of the sample, using kernel density estimation (KDE).

CSV JSON LATEX PICKLE SVG PDF PNG

Significance of Differences

Estimator boeck2015/tempodetector2016_default boeck2019/multi_task boeck2019/multi_task_hjdb boeck2020/dar davies2009/mirex_qm_tempotracker percival2014/stem schreiber2014/default schreiber2017/ismir2017 schreiber2017/mirex2017 schreiber2018/cnn schreiber2018/fcn schreiber2018/ismir2018
boeck2015/tempodetector2016_default 1.0000 0.0269 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.3345 0.0375 0.8146
boeck2019/multi_task 0.0269 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0010 0.0012 0.0000 0.0279
boeck2019/multi_task_hjdb 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0048 0.0000
boeck2020/dar 0.0001 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0014 0.0222 0.0000
davies2009/mirex_qm_tempotracker 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0263 0.0481 0.0000 0.0000 0.0000
percival2014/stem 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
schreiber2014/default 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0015 0.0000 0.0000 0.0000 0.0000
schreiber2017/ismir2017 0.0000 0.0000 0.0000 0.0000 0.0263 0.0000 0.0015 1.0000 0.0000 0.0000 0.0000 0.0000
schreiber2017/mirex2017 0.0000 0.0010 0.0000 0.0000 0.0481 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
schreiber2018/cnn 0.3345 0.0012 0.0003 0.0014 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.2518 0.1648
schreiber2018/fcn 0.0375 0.0000 0.0048 0.0222 0.0000 0.0000 0.0000 0.0000 0.0000 0.2518 1.0000 0.0088
schreiber2018/ismir2018 0.8146 0.0279 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1648 0.0088 1.0000

Table 15: Paired t-test p-values, using reference annotations 3.0 as groundtruth with OE1. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.

CSV JSON LATEX PICKLE

Estimator boeck2015/tempodetector2016_default boeck2019/multi_task boeck2019/multi_task_hjdb boeck2020/dar davies2009/mirex_qm_tempotracker percival2014/stem schreiber2014/default schreiber2017/ismir2017 schreiber2017/mirex2017 schreiber2018/cnn schreiber2018/fcn schreiber2018/ismir2018
boeck2015/tempodetector2016_default 1.0000 0.0269 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.3345 0.0375 0.8146
boeck2019/multi_task 0.0269 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0010 0.0012 0.0000 0.0279
boeck2019/multi_task_hjdb 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0048 0.0000
boeck2020/dar 0.0001 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0014 0.0222 0.0000
davies2009/mirex_qm_tempotracker 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0263 0.0481 0.0000 0.0000 0.0000
percival2014/stem 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
schreiber2014/default 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0015 0.0000 0.0000 0.0000 0.0000
schreiber2017/ismir2017 0.0000 0.0000 0.0000 0.0000 0.0263 0.0000 0.0015 1.0000 0.0000 0.0000 0.0000 0.0000
schreiber2017/mirex2017 0.0000 0.0010 0.0000 0.0000 0.0481 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
schreiber2018/cnn 0.3345 0.0012 0.0003 0.0014 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.2518 0.1648
schreiber2018/fcn 0.0375 0.0000 0.0048 0.0222 0.0000 0.0000 0.0000 0.0000 0.0000 0.2518 1.0000 0.0088
schreiber2018/ismir2018 0.8146 0.0279 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1648 0.0088 1.0000

Table 16: Paired t-test p-values, using reference annotations 2.0 as groundtruth with OE1. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.

CSV JSON LATEX PICKLE

Estimator boeck2015/tempodetector2016_default boeck2019/multi_task boeck2019/multi_task_hjdb boeck2020/dar davies2009/mirex_qm_tempotracker percival2014/stem schreiber2014/default schreiber2017/ismir2017 schreiber2017/mirex2017 schreiber2018/cnn schreiber2018/fcn schreiber2018/ismir2018
boeck2015/tempodetector2016_default 1.0000 0.0269 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.3345 0.0375 0.8146
boeck2019/multi_task 0.0269 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0010 0.0012 0.0000 0.0279
boeck2019/multi_task_hjdb 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0048 0.0000
boeck2020/dar 0.0001 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0014 0.0222 0.0000
davies2009/mirex_qm_tempotracker 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0263 0.0481 0.0000 0.0000 0.0000
percival2014/stem 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
schreiber2014/default 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0015 0.0000 0.0000 0.0000 0.0000
schreiber2017/ismir2017 0.0000 0.0000 0.0000 0.0000 0.0263 0.0000 0.0015 1.0000 0.0000 0.0000 0.0000 0.0000
schreiber2017/mirex2017 0.0000 0.0010 0.0000 0.0000 0.0481 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
schreiber2018/cnn 0.3345 0.0012 0.0003 0.0014 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.2518 0.1648
schreiber2018/fcn 0.0375 0.0000 0.0048 0.0222 0.0000 0.0000 0.0000 0.0000 0.0000 0.2518 1.0000 0.0088
schreiber2018/ismir2018 0.8146 0.0279 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1648 0.0088 1.0000

Table 17: Paired t-test p-values, using reference annotations 1.0 as groundtruth with OE1. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.

CSV JSON LATEX PICKLE

Estimator boeck2015/tempodetector2016_default boeck2019/multi_task boeck2019/multi_task_hjdb boeck2020/dar davies2009/mirex_qm_tempotracker percival2014/stem schreiber2014/default schreiber2017/ismir2017 schreiber2017/mirex2017 schreiber2018/cnn schreiber2018/fcn schreiber2018/ismir2018
boeck2015/tempodetector2016_default 1.0000 0.4893 0.0002 0.0000 0.0000 0.0099 0.1902 0.3876 0.3876 0.0001 0.0001 0.0018
boeck2019/multi_task 0.4893 1.0000 0.8610 0.1158 0.0000 0.7339 0.9291 0.8581 0.8581 0.9144 0.9180 0.8576
boeck2019/multi_task_hjdb 0.0002 0.8610 1.0000 0.0000 0.0000 0.0002 0.8617 0.9598 0.9598 0.2095 0.2480 0.1359
boeck2020/dar 0.0000 0.1158 0.0000 1.0000 0.0000 0.0000 0.0014 0.0165 0.0165 0.0000 0.0000 0.0000
davies2009/mirex_qm_tempotracker 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
percival2014/stem 0.0099 0.7339 0.0002 0.0000 0.0000 1.0000 0.5856 0.8084 0.8084 0.0000 0.0000 0.0279
schreiber2014/default 0.1902 0.9291 0.8617 0.0014 0.0000 0.5856 1.0000 0.7574 0.7574 0.9824 0.9903 0.5730
schreiber2017/ismir2017 0.3876 0.8581 0.9598 0.0165 0.0000 0.8084 0.7574 1.0000 0.8152 0.8629 0.8581 0.5226
schreiber2017/mirex2017 0.3876 0.8581 0.9598 0.0165 0.0000 0.8084 0.7574 0.8152 1.0000 0.8629 0.8581 0.5226
schreiber2018/cnn 0.0001 0.9144 0.2095 0.0000 0.0000 0.0000 0.9824 0.8629 0.8629 1.0000 0.9452 0.2291
schreiber2018/fcn 0.0001 0.9180 0.2480 0.0000 0.0000 0.0000 0.9903 0.8581 0.8581 0.9452 1.0000 0.2213
schreiber2018/ismir2018 0.0018 0.8576 0.1359 0.0000 0.0000 0.0279 0.5730 0.5226 0.5226 0.2291 0.2213 1.0000

Table 18: Paired t-test p-values, using reference annotations 3.0 as groundtruth with OE2. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.

CSV JSON LATEX PICKLE

Estimator boeck2015/tempodetector2016_default boeck2019/multi_task boeck2019/multi_task_hjdb boeck2020/dar davies2009/mirex_qm_tempotracker percival2014/stem schreiber2014/default schreiber2017/ismir2017 schreiber2017/mirex2017 schreiber2018/cnn schreiber2018/fcn schreiber2018/ismir2018
boeck2015/tempodetector2016_default 1.0000 0.4893 0.0002 0.0000 0.0000 0.0099 0.1902 0.3876 0.3876 0.0001 0.0001 0.0018
boeck2019/multi_task 0.4893 1.0000 0.8610 0.1158 0.0000 0.7339 0.9291 0.8581 0.8581 0.9144 0.9180 0.8576
boeck2019/multi_task_hjdb 0.0002 0.8610 1.0000 0.0000 0.0000 0.0002 0.8617 0.9598 0.9598 0.2095 0.2480 0.1359
boeck2020/dar 0.0000 0.1158 0.0000 1.0000 0.0000 0.0000 0.0014 0.0165 0.0165 0.0000 0.0000 0.0000
davies2009/mirex_qm_tempotracker 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
percival2014/stem 0.0099 0.7339 0.0002 0.0000 0.0000 1.0000 0.5856 0.8084 0.8084 0.0000 0.0000 0.0279
schreiber2014/default 0.1902 0.9291 0.8617 0.0014 0.0000 0.5856 1.0000 0.7574 0.7574 0.9824 0.9903 0.5730
schreiber2017/ismir2017 0.3876 0.8581 0.9598 0.0165 0.0000 0.8084 0.7574 1.0000 0.8152 0.8629 0.8581 0.5226
schreiber2017/mirex2017 0.3876 0.8581 0.9598 0.0165 0.0000 0.8084 0.7574 0.8152 1.0000 0.8629 0.8581 0.5226
schreiber2018/cnn 0.0001 0.9144 0.2095 0.0000 0.0000 0.0000 0.9824 0.8629 0.8629 1.0000 0.9452 0.2291
schreiber2018/fcn 0.0001 0.9180 0.2480 0.0000 0.0000 0.0000 0.9903 0.8581 0.8581 0.9452 1.0000 0.2213
schreiber2018/ismir2018 0.0018 0.8576 0.1359 0.0000 0.0000 0.0279 0.5730 0.5226 0.5226 0.2291 0.2213 1.0000

Table 19: Paired t-test p-values, using reference annotations 2.0 as groundtruth with OE2. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.

CSV JSON LATEX PICKLE

Estimator boeck2015/tempodetector2016_default boeck2019/multi_task boeck2019/multi_task_hjdb boeck2020/dar davies2009/mirex_qm_tempotracker percival2014/stem schreiber2014/default schreiber2017/ismir2017 schreiber2017/mirex2017 schreiber2018/cnn schreiber2018/fcn schreiber2018/ismir2018
boeck2015/tempodetector2016_default 1.0000 0.4893 0.0002 0.0000 0.0000 0.0099 0.1902 0.3876 0.3876 0.0001 0.0001 0.0018
boeck2019/multi_task 0.4893 1.0000 0.8610 0.1158 0.0000 0.7339 0.9291 0.8581 0.8581 0.9144 0.9180 0.8576
boeck2019/multi_task_hjdb 0.0002 0.8610 1.0000 0.0000 0.0000 0.0002 0.8617 0.9598 0.9598 0.2095 0.2480 0.1359
boeck2020/dar 0.0000 0.1158 0.0000 1.0000 0.0000 0.0000 0.0014 0.0165 0.0165 0.0000 0.0000 0.0000
davies2009/mirex_qm_tempotracker 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
percival2014/stem 0.0099 0.7339 0.0002 0.0000 0.0000 1.0000 0.5856 0.8084 0.8084 0.0000 0.0000 0.0279
schreiber2014/default 0.1902 0.9291 0.8617 0.0014 0.0000 0.5856 1.0000 0.7574 0.7574 0.9824 0.9903 0.5730
schreiber2017/ismir2017 0.3876 0.8581 0.9598 0.0165 0.0000 0.8084 0.7574 1.0000 0.8152 0.8629 0.8581 0.5226
schreiber2017/mirex2017 0.3876 0.8581 0.9598 0.0165 0.0000 0.8084 0.7574 0.8152 1.0000 0.8629 0.8581 0.5226
schreiber2018/cnn 0.0001 0.9144 0.2095 0.0000 0.0000 0.0000 0.9824 0.8629 0.8629 1.0000 0.9452 0.2291
schreiber2018/fcn 0.0001 0.9180 0.2480 0.0000 0.0000 0.0000 0.9903 0.8581 0.8581 0.9452 1.0000 0.2213
schreiber2018/ismir2018 0.0018 0.8576 0.1359 0.0000 0.0000 0.0279 0.5730 0.5226 0.5226 0.2291 0.2213 1.0000

Table 20: Paired t-test p-values, using reference annotations 1.0 as groundtruth with OE2. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.

CSV JSON LATEX PICKLE

OE1 on cvar-Subsets

How well does an estimator perform, when only taking tracks into account that have a cvar-value of less than τ, i.e., have a more or less stable beat?

OE1 on cvar-Subsets for 1.0 based on cvar-Values from 1.0

Figure 34: Mean OE1 compared to version 1.0 for tracks with cvar < τ based on beat annotations from 1.0.

CSV JSON LATEX PICKLE SVG PDF PNG

OE1 on cvar-Subsets for 2.0 based on cvar-Values from 1.0

Figure 35: Mean OE1 compared to version 2.0 for tracks with cvar < τ based on beat annotations from 2.0.

CSV JSON LATEX PICKLE SVG PDF PNG

OE1 on cvar-Subsets for 3.0 based on cvar-Values from 1.0

Figure 36: Mean OE1 compared to version 3.0 for tracks with cvar < τ based on beat annotations from 3.0.

CSV JSON LATEX PICKLE SVG PDF PNG

OE2 on cvar-Subsets

How well does an estimator perform, when only taking tracks into account that have a cvar-value of less than τ, i.e., have a more or less stable beat?

OE2 on cvar-Subsets for 1.0 based on cvar-Values from 1.0

Figure 37: Mean OE2 compared to version 1.0 for tracks with cvar < τ based on beat annotations from 1.0.

CSV JSON LATEX PICKLE SVG PDF PNG

OE2 on cvar-Subsets for 2.0 based on cvar-Values from 1.0

Figure 38: Mean OE2 compared to version 2.0 for tracks with cvar < τ based on beat annotations from 2.0.

CSV JSON LATEX PICKLE SVG PDF PNG

OE2 on cvar-Subsets for 3.0 based on cvar-Values from 1.0

Figure 39: Mean OE2 compared to version 3.0 for tracks with cvar < τ based on beat annotations from 3.0.

CSV JSON LATEX PICKLE SVG PDF PNG

OE1 on Tempo-Subsets

How well does an estimator perform, when only taking a subset of the reference annotations into account? The graphs show mean OE1 for reference subsets with tempi in [T-10,T+10] BPM. Note that the graphs do not show confidence intervals and that some values may be based on very few estimates.

OE1 on Tempo-Subsets for 1.0

Figure 40: Mean OE1 for estimates compared to version 1.0 for tempo intervals around T.

CSV JSON LATEX PICKLE SVG PDF PNG

OE1 on Tempo-Subsets for 2.0

Figure 41: Mean OE1 for estimates compared to version 2.0 for tempo intervals around T.

CSV JSON LATEX PICKLE SVG PDF PNG

OE1 on Tempo-Subsets for 3.0

Figure 42: Mean OE1 for estimates compared to version 3.0 for tempo intervals around T.

CSV JSON LATEX PICKLE SVG PDF PNG

OE2 on Tempo-Subsets

How well does an estimator perform, when only taking a subset of the reference annotations into account? The graphs show mean OE2 for reference subsets with tempi in [T-10,T+10] BPM. Note that the graphs do not show confidence intervals and that some values may be based on very few estimates.

OE2 on Tempo-Subsets for 1.0

Figure 43: Mean OE2 for estimates compared to version 1.0 for tempo intervals around T.

CSV JSON LATEX PICKLE SVG PDF PNG

OE2 on Tempo-Subsets for 2.0

Figure 44: Mean OE2 for estimates compared to version 2.0 for tempo intervals around T.

CSV JSON LATEX PICKLE SVG PDF PNG

OE2 on Tempo-Subsets for 3.0

Figure 45: Mean OE2 for estimates compared to version 3.0 for tempo intervals around T.

CSV JSON LATEX PICKLE SVG PDF PNG

Estimated OE1 for Tempo

When fitting a generalized additive model (GAM) to OE1-values and a ground truth, what OE1 can we expect with confidence?

Estimated OE1 for Tempo for 1.0

Predictions of GAMs trained on OE1 for estimates for reference 1.0.

Figure 46: OE1 predictions of a generalized additive model (GAM) fit to OE1 results for 1.0. The 95% confidence interval around the prediction is shaded in gray.

CSV JSON LATEX PICKLE SVG PDF PNG

Estimated OE1 for Tempo for 2.0

Predictions of GAMs trained on OE1 for estimates for reference 2.0.

Figure 47: OE1 predictions of a generalized additive model (GAM) fit to OE1 results for 2.0. The 95% confidence interval around the prediction is shaded in gray.

CSV JSON LATEX PICKLE SVG PDF PNG

Estimated OE1 for Tempo for 3.0

Predictions of GAMs trained on OE1 for estimates for reference 3.0.

Figure 48: OE1 predictions of a generalized additive model (GAM) fit to OE1 results for 3.0. The 95% confidence interval around the prediction is shaded in gray.

CSV JSON LATEX PICKLE SVG PDF PNG

Estimated OE2 for Tempo

When fitting a generalized additive model (GAM) to OE2-values and a ground truth, what OE2 can we expect with confidence?

Estimated OE2 for Tempo for 1.0

Predictions of GAMs trained on OE2 for estimates for reference 1.0.

Figure 49: OE2 predictions of a generalized additive model (GAM) fit to OE2 results for 1.0. The 95% confidence interval around the prediction is shaded in gray.

CSV JSON LATEX PICKLE SVG PDF PNG

Estimated OE2 for Tempo for 2.0

Predictions of GAMs trained on OE2 for estimates for reference 2.0.

Figure 50: OE2 predictions of a generalized additive model (GAM) fit to OE2 results for 2.0. The 95% confidence interval around the prediction is shaded in gray.

CSV JSON LATEX PICKLE SVG PDF PNG

Estimated OE2 for Tempo for 3.0

Predictions of GAMs trained on OE2 for estimates for reference 3.0.

Figure 51: OE2 predictions of a generalized additive model (GAM) fit to OE2 results for 3.0. The 95% confidence interval around the prediction is shaded in gray.

CSV JSON LATEX PICKLE SVG PDF PNG

AOE1 and AOE2

AOE1 is defined as absolute octave error between an estimate and a reference value: AOE1(E) = |log2(E/R)|.

AOE2 is the minimum of AOE1 allowing the octave errors 2, 3, 1/2, and 1/3: AOE2(E) = min(AOE1(E), AOE1(2E), AOE1(3E), AOE1(½E), AOE1(⅓E)).

Mean AOE1/AOE2 Results for 1.0

Estimator AOE1_MEAN AOE1_STDEV AOE2_MEAN AOE2_STDEV
boeck2020/dar 0.0087 0.0074 0.0087 0.0074
boeck2019/multi_task_hjdb 0.0093 0.0057 0.0093 0.0057
schreiber2018/fcn 0.0425 0.1769 0.0096 0.0066
schreiber2018/cnn 0.0643 0.2256 0.0096 0.0063
boeck2015/tempodetector2016_default 0.0762 0.2702 0.0025 0.0073
schreiber2018/ismir2018 0.0944 0.2762 0.0103 0.0182
boeck2019/multi_task 0.1616 0.3413 0.0259 0.0695
schreiber2017/mirex2017 0.2607 0.4281 0.0136 0.0392
davies2009/mirex_qm_tempotracker 0.3488 0.3984 0.1079 0.1661
schreiber2017/ismir2017 0.4076 0.4829 0.0136 0.0392
schreiber2014/default 0.5329 0.4926 0.0129 0.0308
percival2014/stem 0.7157 0.4466 0.0091 0.0056

Table 21: Mean AOE1/AOE2 for estimates compared to version 1.0 ordered by mean.

CSV JSON LATEX PICKLE

Raw data AOE1: CSV JSON LATEX PICKLE

Raw data AOE2: CSV JSON LATEX PICKLE

AOE1 distribution for 1.0

Figure 52: AOE1 for estimates compared to version 1.0. Shown are the mean AOE1 and an empirical distribution of the sample, using kernel density estimation (KDE).

CSV JSON LATEX PICKLE SVG PDF PNG

AOE2 distribution for 1.0

Figure 53: AOE2 for estimates compared to version 1.0. Shown are the mean AOE2 and an empirical distribution of the sample, using kernel density estimation (KDE).

CSV JSON LATEX PICKLE SVG PDF PNG

Mean AOE1/AOE2 Results for 2.0

Estimator AOE1_MEAN AOE1_STDEV AOE2_MEAN AOE2_STDEV
boeck2019/multi_task_hjdb 0.0028 0.0023 0.0028 0.0023
boeck2020/dar 0.0067 0.0045 0.0067 0.0045
schreiber2018/fcn 0.0369 0.1801 0.0032 0.0032
schreiber2018/cnn 0.0579 0.2282 0.0027 0.0029
boeck2015/tempodetector2016_default 0.0831 0.2683 0.0083 0.0067
schreiber2018/ismir2018 0.0897 0.2779 0.0051 0.0168
boeck2019/multi_task 0.1593 0.3449 0.0221 0.0695
schreiber2017/mirex2017 0.2562 0.4318 0.0068 0.0398
davies2009/mirex_qm_tempotracker 0.3499 0.4007 0.1058 0.1665
schreiber2017/ismir2017 0.4049 0.4871 0.0068 0.0398
schreiber2014/default 0.5319 0.4977 0.0062 0.0312
percival2014/stem 0.7160 0.4506 0.0023 0.0018

Table 22: Mean AOE1/AOE2 for estimates compared to version 2.0 ordered by mean.

CSV JSON LATEX PICKLE

Raw data AOE1: CSV JSON LATEX PICKLE

Raw data AOE2: CSV JSON LATEX PICKLE

AOE1 distribution for 2.0

Figure 54: AOE1 for estimates compared to version 2.0. Shown are the mean AOE1 and an empirical distribution of the sample, using kernel density estimation (KDE).

CSV JSON LATEX PICKLE SVG PDF PNG

AOE2 distribution for 2.0

Figure 55: AOE2 for estimates compared to version 2.0. Shown are the mean AOE2 and an empirical distribution of the sample, using kernel density estimation (KDE).

CSV JSON LATEX PICKLE SVG PDF PNG

Mean AOE1/AOE2 Results for 3.0

Estimator AOE1_MEAN AOE1_STDEV AOE2_MEAN AOE2_STDEV
boeck2020/dar 0.0087 0.0074 0.0087 0.0074
boeck2019/multi_task_hjdb 0.0095 0.0057 0.0095 0.0057
schreiber2018/fcn 0.0425 0.1769 0.0096 0.0068
schreiber2018/cnn 0.0644 0.2256 0.0097 0.0063
boeck2015/tempodetector2016_default 0.0760 0.2702 0.0023 0.0071
schreiber2018/ismir2018 0.0945 0.2761 0.0105 0.0182
boeck2019/multi_task 0.1616 0.3413 0.0259 0.0695
schreiber2017/mirex2017 0.2608 0.4282 0.0137 0.0391
davies2009/mirex_qm_tempotracker 0.3488 0.3982 0.1081 0.1662
schreiber2017/ismir2017 0.4077 0.4828 0.0137 0.0391
schreiber2014/default 0.5329 0.4926 0.0130 0.0308
percival2014/stem 0.7155 0.4465 0.0092 0.0056

Table 23: Mean AOE1/AOE2 for estimates compared to version 3.0 ordered by mean.

CSV JSON LATEX PICKLE

Raw data AOE1: CSV JSON LATEX PICKLE

Raw data AOE2: CSV JSON LATEX PICKLE

AOE1 distribution for 3.0

Figure 56: AOE1 for estimates compared to version 3.0. Shown are the mean AOE1 and an empirical distribution of the sample, using kernel density estimation (KDE).

CSV JSON LATEX PICKLE SVG PDF PNG

AOE2 distribution for 3.0

Figure 57: AOE2 for estimates compared to version 3.0. Shown are the mean AOE2 and an empirical distribution of the sample, using kernel density estimation (KDE).

CSV JSON LATEX PICKLE SVG PDF PNG

Significance of Differences

Estimator boeck2015/tempodetector2016_default boeck2019/multi_task boeck2019/multi_task_hjdb boeck2020/dar davies2009/mirex_qm_tempotracker percival2014/stem schreiber2014/default schreiber2017/ismir2017 schreiber2017/mirex2017 schreiber2018/cnn schreiber2018/fcn schreiber2018/ismir2018
boeck2015/tempodetector2016_default 1.0000 0.0040 0.0002 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.6132 0.1082 0.4682
boeck2019/multi_task 0.0040 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0029 0.0003 0.0000 0.0130
boeck2019/multi_task_hjdb 0.0002 0.0000 1.0000 0.0941 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0044 0.0000
boeck2020/dar 0.0002 0.0000 0.0941 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0039 0.0000
davies2009/mirex_qm_tempotracker 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0876 0.0103 0.0000 0.0000 0.0000
percival2014/stem 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
schreiber2014/default 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0015 0.0000 0.0000 0.0000 0.0000
schreiber2017/ismir2017 0.0000 0.0000 0.0000 0.0000 0.0876 0.0000 0.0015 1.0000 0.0000 0.0000 0.0000 0.0000
schreiber2017/mirex2017 0.0000 0.0029 0.0000 0.0000 0.0103 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
schreiber2018/cnn 0.6132 0.0003 0.0002 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.2313 0.1356
schreiber2018/fcn 0.1082 0.0000 0.0044 0.0039 0.0000 0.0000 0.0000 0.0000 0.0000 0.2313 1.0000 0.0054
schreiber2018/ismir2018 0.4682 0.0130 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1356 0.0054 1.0000

Table 24: Paired t-test p-values, using reference annotations 3.0 as groundtruth with AOE1. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.

CSV JSON LATEX PICKLE

Estimator boeck2015/tempodetector2016_default boeck2019/multi_task boeck2019/multi_task_hjdb boeck2020/dar davies2009/mirex_qm_tempotracker percival2014/stem schreiber2014/default schreiber2017/ismir2017 schreiber2017/mirex2017 schreiber2018/cnn schreiber2018/fcn schreiber2018/ismir2018
boeck2015/tempodetector2016_default 1.0000 0.0106 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2739 0.0273 0.7960
boeck2019/multi_task 0.0106 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0040 0.0002 0.0000 0.0109
boeck2019/multi_task_hjdb 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0041 0.0000
boeck2020/dar 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0007 0.0105 0.0000
davies2009/mirex_qm_tempotracker 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.1146 0.0068 0.0000 0.0000 0.0000
percival2014/stem 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
schreiber2014/default 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0015 0.0000 0.0000 0.0000 0.0000
schreiber2017/ismir2017 0.0000 0.0000 0.0000 0.0000 0.1146 0.0000 0.0015 1.0000 0.0000 0.0000 0.0000 0.0000
schreiber2017/mirex2017 0.0000 0.0040 0.0000 0.0000 0.0068 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
schreiber2018/cnn 0.2739 0.0002 0.0003 0.0007 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.2589 0.1171
schreiber2018/fcn 0.0273 0.0000 0.0041 0.0105 0.0000 0.0000 0.0000 0.0000 0.0000 0.2589 1.0000 0.0052
schreiber2018/ismir2018 0.7960 0.0109 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1171 0.0052 1.0000

Table 25: Paired t-test p-values, using reference annotations 2.0 as groundtruth with AOE1. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.

CSV JSON LATEX PICKLE

Estimator boeck2015/tempodetector2016_default boeck2019/multi_task boeck2019/multi_task_hjdb boeck2020/dar davies2009/mirex_qm_tempotracker percival2014/stem schreiber2014/default schreiber2017/ismir2017 schreiber2017/mirex2017 schreiber2018/cnn schreiber2018/fcn schreiber2018/ismir2018
boeck2015/tempodetector2016_default 1.0000 0.0041 0.0002 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.6037 0.1060 0.4762
boeck2019/multi_task 0.0041 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0030 0.0003 0.0000 0.0129
boeck2019/multi_task_hjdb 0.0002 0.0000 1.0000 0.2211 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0042 0.0000
boeck2020/dar 0.0002 0.0000 0.2211 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0040 0.0000
davies2009/mirex_qm_tempotracker 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0882 0.0101 0.0000 0.0000 0.0000
percival2014/stem 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
schreiber2014/default 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0015 0.0000 0.0000 0.0000 0.0000
schreiber2017/ismir2017 0.0000 0.0000 0.0000 0.0000 0.0882 0.0000 0.0015 1.0000 0.0000 0.0000 0.0000 0.0000
schreiber2017/mirex2017 0.0000 0.0030 0.0000 0.0000 0.0101 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
schreiber2018/cnn 0.6037 0.0003 0.0002 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.2336 0.1360
schreiber2018/fcn 0.1060 0.0000 0.0042 0.0040 0.0000 0.0000 0.0000 0.0000 0.0000 0.2336 1.0000 0.0055
schreiber2018/ismir2018 0.4762 0.0129 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1360 0.0055 1.0000

Table 26: Paired t-test p-values, using reference annotations 1.0 as groundtruth with AOE1. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.

CSV JSON LATEX PICKLE

Estimator boeck2015/tempodetector2016_default boeck2019/multi_task boeck2019/multi_task_hjdb boeck2020/dar davies2009/mirex_qm_tempotracker percival2014/stem schreiber2014/default schreiber2017/ismir2017 schreiber2017/mirex2017 schreiber2018/cnn schreiber2018/fcn schreiber2018/ismir2018
boeck2015/tempodetector2016_default 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
boeck2019/multi_task 0.0000 1.0000 0.0004 0.0002 0.0000 0.0003 0.0106 0.0212 0.0212 0.0005 0.0004 0.0012
boeck2019/multi_task_hjdb 0.0000 0.0004 1.0000 0.0941 0.0000 0.0999 0.0821 0.1018 0.1018 0.3790 0.7426 0.3823
boeck2020/dar 0.0000 0.0002 0.0941 1.0000 0.0000 0.2577 0.0309 0.0499 0.0499 0.0660 0.1183 0.1492
davies2009/mirex_qm_tempotracker 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
percival2014/stem 0.0000 0.0003 0.0999 0.2577 0.0000 1.0000 0.0608 0.0786 0.0786 0.0434 0.1318 0.2525
schreiber2014/default 0.0000 0.0106 0.0821 0.0309 0.0000 0.0608 1.0000 0.6556 0.6556 0.1070 0.0929 0.2851
schreiber2017/ismir2017 0.0000 0.0212 0.1018 0.0499 0.0000 0.0786 0.6556 1.0000 0.3734 0.1213 0.1076 0.2516
schreiber2017/mirex2017 0.0000 0.0212 0.1018 0.0499 0.0000 0.0786 0.6556 0.3734 1.0000 0.1213 0.1076 0.2516
schreiber2018/cnn 0.0000 0.0005 0.3790 0.0660 0.0000 0.0434 0.1070 0.1213 0.1213 1.0000 0.6820 0.4906
schreiber2018/fcn 0.0000 0.0004 0.7426 0.1183 0.0000 0.1318 0.0929 0.1076 0.1076 0.6820 1.0000 0.4153
schreiber2018/ismir2018 0.0000 0.0012 0.3823 0.1492 0.0000 0.2525 0.2851 0.2516 0.2516 0.4906 0.4153 1.0000

Table 27: Paired t-test p-values, using reference annotations 3.0 as groundtruth with AOE2. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.

CSV JSON LATEX PICKLE

Estimator boeck2015/tempodetector2016_default boeck2019/multi_task boeck2019/multi_task_hjdb boeck2020/dar davies2009/mirex_qm_tempotracker percival2014/stem schreiber2014/default schreiber2017/ismir2017 schreiber2017/mirex2017 schreiber2018/cnn schreiber2018/fcn schreiber2018/ismir2018
boeck2015/tempodetector2016_default 1.0000 0.0030 0.0000 0.0011 0.0000 0.0000 0.3307 0.5766 0.5766 0.0000 0.0000 0.0068
boeck2019/multi_task 0.0030 1.0000 0.0000 0.0009 0.0000 0.0000 0.0017 0.0039 0.0039 0.0000 0.0000 0.0003
boeck2019/multi_task_hjdb 0.0000 0.0000 1.0000 0.0000 0.0000 0.0050 0.0896 0.1191 0.1191 0.7010 0.1546 0.0395
boeck2020/dar 0.0011 0.0009 0.0000 1.0000 0.0000 0.0000 0.8203 0.9608 0.9608 0.0000 0.0000 0.1690
davies2009/mirex_qm_tempotracker 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
percival2014/stem 0.0000 0.0000 0.0050 0.0000 0.0000 1.0000 0.0557 0.0853 0.0853 0.0727 0.0004 0.0127
schreiber2014/default 0.3307 0.0017 0.0896 0.8203 0.0000 0.0557 1.0000 0.7220 0.7220 0.0864 0.1300 0.6372
schreiber2017/ismir2017 0.5766 0.0039 0.1191 0.9608 0.0000 0.0853 0.7220 1.0000 0.9513 0.1164 0.1590 0.5531
schreiber2017/mirex2017 0.5766 0.0039 0.1191 0.9608 0.0000 0.0853 0.7220 0.9513 1.0000 0.1164 0.1590 0.5531
schreiber2018/cnn 0.0000 0.0000 0.7010 0.0000 0.0000 0.0727 0.0864 0.1164 0.1164 1.0000 0.0388 0.0314
schreiber2018/fcn 0.0000 0.0000 0.1546 0.0000 0.0000 0.0004 0.1300 0.1590 0.1590 0.0388 1.0000 0.0715
schreiber2018/ismir2018 0.0068 0.0003 0.0395 0.1690 0.0000 0.0127 0.6372 0.5531 0.5531 0.0314 0.0715 1.0000

Table 28: Paired t-test p-values, using reference annotations 2.0 as groundtruth with AOE2. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.

CSV JSON LATEX PICKLE

Estimator boeck2015/tempodetector2016_default boeck2019/multi_task boeck2019/multi_task_hjdb boeck2020/dar davies2009/mirex_qm_tempotracker percival2014/stem schreiber2014/default schreiber2017/ismir2017 schreiber2017/mirex2017 schreiber2018/cnn schreiber2018/fcn schreiber2018/ismir2018
boeck2015/tempodetector2016_default 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
boeck2019/multi_task 0.0000 1.0000 0.0003 0.0003 0.0000 0.0003 0.0101 0.0202 0.0202 0.0004 0.0004 0.0011
boeck2019/multi_task_hjdb 0.0000 0.0003 1.0000 0.2211 0.0000 0.2051 0.0753 0.0959 0.0959 0.2228 0.3526 0.3654
boeck2020/dar 0.0000 0.0003 0.2211 1.0000 0.0000 0.4141 0.0367 0.0565 0.0565 0.1113 0.1343 0.1938
davies2009/mirex_qm_tempotracker 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
percival2014/stem 0.0000 0.0003 0.2051 0.4141 0.0000 1.0000 0.0603 0.0792 0.0792 0.0379 0.0591 0.2658
schreiber2014/default 0.0000 0.0101 0.0753 0.0367 0.0000 0.0603 1.0000 0.6558 0.6558 0.1070 0.1014 0.2765
schreiber2017/ismir2017 0.0000 0.0202 0.0959 0.0565 0.0000 0.0792 0.6558 1.0000 0.3734 0.1227 0.1164 0.2466
schreiber2017/mirex2017 0.0000 0.0202 0.0959 0.0565 0.0000 0.0792 0.6558 0.3734 1.0000 0.1227 0.1164 0.2466
schreiber2018/cnn 0.0000 0.0004 0.2228 0.1113 0.0000 0.0379 0.1070 0.1227 0.1227 1.0000 0.9102 0.5143
schreiber2018/fcn 0.0000 0.0004 0.3526 0.1343 0.0000 0.0591 0.1014 0.1164 0.1164 0.9102 1.0000 0.4837
schreiber2018/ismir2018 0.0000 0.0011 0.3654 0.1938 0.0000 0.2658 0.2765 0.2466 0.2466 0.5143 0.4837 1.0000

Table 29: Paired t-test p-values, using reference annotations 1.0 as groundtruth with AOE2. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.

CSV JSON LATEX PICKLE

AOE1 on cvar-Subsets

How well does an estimator perform, when only taking tracks into account that have a cvar-value of less than τ, i.e., have a more or less stable beat?

AOE1 on cvar-Subsets for 1.0 based on cvar-Values from 1.0

Figure 58: Mean AOE1 compared to version 1.0 for tracks with cvar < τ based on beat annotations from 1.0.

CSV JSON LATEX PICKLE SVG PDF PNG

AOE1 on cvar-Subsets for 2.0 based on cvar-Values from 1.0

Figure 59: Mean AOE1 compared to version 2.0 for tracks with cvar < τ based on beat annotations from 2.0.

CSV JSON LATEX PICKLE SVG PDF PNG

AOE1 on cvar-Subsets for 3.0 based on cvar-Values from 1.0

Figure 60: Mean AOE1 compared to version 3.0 for tracks with cvar < τ based on beat annotations from 3.0.

CSV JSON LATEX PICKLE SVG PDF PNG

AOE2 on cvar-Subsets

How well does an estimator perform, when only taking tracks into account that have a cvar-value of less than τ, i.e., have a more or less stable beat?

AOE2 on cvar-Subsets for 1.0 based on cvar-Values from 1.0

Figure 61: Mean AOE2 compared to version 1.0 for tracks with cvar < τ based on beat annotations from 1.0.

CSV JSON LATEX PICKLE SVG PDF PNG

AOE2 on cvar-Subsets for 2.0 based on cvar-Values from 1.0

Figure 62: Mean AOE2 compared to version 2.0 for tracks with cvar < τ based on beat annotations from 2.0.

CSV JSON LATEX PICKLE SVG PDF PNG

AOE2 on cvar-Subsets for 3.0 based on cvar-Values from 1.0

Figure 63: Mean AOE2 compared to version 3.0 for tracks with cvar < τ based on beat annotations from 3.0.

CSV JSON LATEX PICKLE SVG PDF PNG

AOE1 on Tempo-Subsets

How well does an estimator perform, when only taking a subset of the reference annotations into account? The graphs show mean AOE1 for reference subsets with tempi in [T-10,T+10] BPM. Note that the graphs do not show confidence intervals and that some values may be based on very few estimates.

AOE1 on Tempo-Subsets for 1.0

Figure 64: Mean AOE1 for estimates compared to version 1.0 for tempo intervals around T.

CSV JSON LATEX PICKLE SVG PDF PNG

AOE1 on Tempo-Subsets for 2.0

Figure 65: Mean AOE1 for estimates compared to version 2.0 for tempo intervals around T.

CSV JSON LATEX PICKLE SVG PDF PNG

AOE1 on Tempo-Subsets for 3.0

Figure 66: Mean AOE1 for estimates compared to version 3.0 for tempo intervals around T.

CSV JSON LATEX PICKLE SVG PDF PNG

AOE2 on Tempo-Subsets

How well does an estimator perform, when only taking a subset of the reference annotations into account? The graphs show mean AOE2 for reference subsets with tempi in [T-10,T+10] BPM. Note that the graphs do not show confidence intervals and that some values may be based on very few estimates.

AOE2 on Tempo-Subsets for 1.0

Figure 67: Mean AOE2 for estimates compared to version 1.0 for tempo intervals around T.

CSV JSON LATEX PICKLE SVG PDF PNG

AOE2 on Tempo-Subsets for 2.0

Figure 68: Mean AOE2 for estimates compared to version 2.0 for tempo intervals around T.

CSV JSON LATEX PICKLE SVG PDF PNG

AOE2 on Tempo-Subsets for 3.0

Figure 69: Mean AOE2 for estimates compared to version 3.0 for tempo intervals around T.

CSV JSON LATEX PICKLE SVG PDF PNG

Estimated AOE1 for Tempo

When fitting a generalized additive model (GAM) to AOE1-values and a ground truth, what AOE1 can we expect with confidence?

Estimated AOE1 for Tempo for 1.0

Predictions of GAMs trained on AOE1 for estimates for reference 1.0.

Figure 70: AOE1 predictions of a generalized additive model (GAM) fit to AOE1 results for 1.0. The 95% confidence interval around the prediction is shaded in gray.

CSV JSON LATEX PICKLE SVG PDF PNG

Estimated AOE1 for Tempo for 2.0

Predictions of GAMs trained on AOE1 for estimates for reference 2.0.

Figure 71: AOE1 predictions of a generalized additive model (GAM) fit to AOE1 results for 2.0. The 95% confidence interval around the prediction is shaded in gray.

CSV JSON LATEX PICKLE SVG PDF PNG

Estimated AOE1 for Tempo for 3.0

Predictions of GAMs trained on AOE1 for estimates for reference 3.0.

Figure 72: AOE1 predictions of a generalized additive model (GAM) fit to AOE1 results for 3.0. The 95% confidence interval around the prediction is shaded in gray.

CSV JSON LATEX PICKLE SVG PDF PNG

Estimated AOE2 for Tempo

When fitting a generalized additive model (GAM) to AOE2-values and a ground truth, what AOE2 can we expect with confidence?

Estimated AOE2 for Tempo for 1.0

Predictions of GAMs trained on AOE2 for estimates for reference 1.0.

Figure 73: AOE2 predictions of a generalized additive model (GAM) fit to AOE2 results for 1.0. The 95% confidence interval around the prediction is shaded in gray.

CSV JSON LATEX PICKLE SVG PDF PNG

Estimated AOE2 for Tempo for 2.0

Predictions of GAMs trained on AOE2 for estimates for reference 2.0.

Figure 74: AOE2 predictions of a generalized additive model (GAM) fit to AOE2 results for 2.0. The 95% confidence interval around the prediction is shaded in gray.

CSV JSON LATEX PICKLE SVG PDF PNG

Estimated AOE2 for Tempo for 3.0

Predictions of GAMs trained on AOE2 for estimates for reference 3.0.

Figure 75: AOE2 predictions of a generalized additive model (GAM) fit to AOE2 results for 3.0. The 95% confidence interval around the prediction is shaded in gray.

CSV JSON LATEX PICKLE SVG PDF PNG


Generated by tempo_eval 0.1.1 on 2022-06-29 18:46. Size L.