giantsteps_tempo
This is the tempo_eval report for the ‘giantsteps_tempo’ corpus.
Reports for other corpora may be found here.
Table of Contents
- References for ‘giantsteps_tempo’
- Estimates for ‘giantsteps_tempo’
- Estimators
- Basic Statistics
- Smoothed Tempo Distribution
- Accuracy
- Accuracy Results for 1.0
- Accuracy1 for 1.0
- Accuracy2 for 1.0
- Accuracy Results for 2.0
- Accuracy1 for 2.0
- Accuracy2 for 2.0
- Differing Items
- Significance of Differences
- Accuracy1 on Tempo-Subsets
- Accuracy2 on Tempo-Subsets
- Estimated Accuracy1 for Tempo
- Estimated Accuracy2 for Tempo
- Accuracy1 for ‘tag_open’ Tags
- Accuracy2 for ‘tag_open’ Tags
- MIREX-Style Evaluation
- MIREX Results for 2.0
- P-Score for 2.0
- One Correct for 2.0
- Both Correct for 2.0
- P-Score on Tempo-Subsets
- One Correct on Tempo-Subsets
- Both Correct on Tempo-Subsets
- Estimated P-Score for Tempo
- Estimated One Correct for Tempo
- Estimated Both Correct for Tempo
- P-Score for ‘tag_open’ Tags
- One Correct for ‘tag_open’ Tags
- Both Correct for ‘tag_open’ Tags
- OE1 and OE2
- Mean OE1/OE2 Results for 1.0
- OE1 distribution for 1.0
- OE2 distribution for 1.0
- Mean OE1/OE2 Results for 2.0
- OE1 distribution for 2.0
- OE2 distribution for 2.0
- Significance of Differences
- OE1 on Tempo-Subsets
- OE2 on Tempo-Subsets
- Estimated OE1 for Tempo
- Estimated OE2 for Tempo
- OE1 for ‘tag_open’ Tags
- OE2 for ‘tag_open’ Tags
- AOE1 and AOE2
- Mean AOE1/AOE2 Results for 1.0
- AOE1 distribution for 1.0
- AOE2 distribution for 1.0
- Mean AOE1/AOE2 Results for 2.0
- AOE1 distribution for 2.0
- AOE2 distribution for 2.0
- Significance of Differences
- AOE1 on Tempo-Subsets
- AOE2 on Tempo-Subsets
- Estimated AOE1 for Tempo
- Estimated AOE2 for Tempo
- AOE1 for ‘tag_open’ Tags
- AOE2 for ‘tag_open’ Tags
References for ‘giantsteps_tempo’
References
1.0
Attribute | Value |
---|---|
Corpus | GiantSteps Tempo |
Version | 1.0 |
Curator | Peter Knees |
Validation | http://www.cp.jku.at/datasets/giantsteps/ |
Data Source | P. Knees, Á. Faraldo, P. Herrera, R. Vogl, S. Böck, F. Hörschläger, and M. Le Goff.: ‘Two Data Sets for Tempo Estimation and Key Detection in Electronic Dance Music Annotated from User Corrections.’ In Proc. of the 16th International Society for Music Information Retrieval Conference (ISMIR), Málaga, Spain, 2015. |
Annotation Tools | Beatport Forum |
2.0
Attribute | Value |
---|---|
Corpus | GiantSteps Tempo |
Version | 2.0 |
Curator | Hendrik Schreiber |
Data Source | crowdsource |
Annotation Tools | crowdsourced, web-based experiment |
Annotator, bibtex | Schreiber2018b |
Annotator, ref_url | http://www.tagtraum.com/tempo_estimation.html |
Basic Statistics
Reference | Size | Min | Max | Avg | Stdev | Sweet Oct. Start | Sweet Oct. Coverage |
---|---|---|---|---|---|---|---|
1.0 | 664 | 53.00 | 200.00 | 136.66 | 28.35 | 91.00 | 0.88 |
2.0 | 661 | 64.00 | 197.00 | 138.58 | 25.91 | 90.00 | 0.92 |
Smoothed Tempo Distribution
Figure 1: Percentage of values in tempo interval.
CSV JSON LATEX PICKLE SVG PDF PNG
Tag Distribution for ‘tag_open’
Figure 2: Percentage of tracks tagged with tags from namespace ‘tag_open’. Annotations are from reference 1.0.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimates for ‘giantsteps_tempo’
Estimators
boeck2015/tempodetector2016_default
Attribute | Value |
---|---|
Corpus | giantsteps_tempo |
Version | 0.17.dev0 |
Annotation Tools | TempoDetector.2016, madmom, https://github.com/CPJKU/madmom |
Annotator, bibtex | Boeck2015 |
boeck2019/multi_task
Attribute | Value |
---|---|
Corpus | giantsteps_tempo |
Version | 0.0.1 |
Annotation Tools | model=multi_task, https://github.com/superbock/ISMIR2019 |
Annotator, bibtex | Boeck2019 |
boeck2019/multi_task_hjdb
Attribute | Value |
---|---|
Corpus | giantsteps_tempo |
Version | 0.0.1 |
Annotation Tools | model=multi_task_hjdb, https://github.com/superbock/ISMIR2019 |
Annotator, bibtex | Boeck2019 |
boeck2020/dar
Attribute | Value |
---|---|
Corpus | giantsteps_tempo |
Version | 0.0.1 |
Annotation Tools | https://github.com/superbock/ISMIR2020 |
Annotator, bibtex | Boeck2020 |
davies2009/mirex_qm_tempotracker
Attribute | Value | |
---|---|---|
Corpus | giantsteps_tempo | |
Version | 1.0 | |
Annotation Tools | QM Tempotracker, Sonic Annotator plugin. https://code.soundsoftware.ac.uk/projects/mirex2013/repository/show/audio_tempo_estimation/qm-tempotracker Note that the current macOS build of ‘qm-vamp-plugins’ was used. | |
Annotator, bibtex | Davies2009 | Davies2007 |
percival2014/stem
Attribute | Value |
---|---|
Corpus | giantsteps_tempo |
Version | 1.0 |
Annotation Tools | percival 2014, ‘tempo’ implementation from Marsyas, http://marsyas.info, git checkout tempo-stem |
Annotator, bibtex | Percival2014 |
schreiber2014/default
Attribute | Value |
---|---|
Corpus | giantsteps_tempo |
Version | 0.0.1 |
Annotation Tools | schreiber 2014, http://www.tagtraum.com/tempo_estimation.html |
Annotator, bibtex | Schreiber2014 |
schreiber2017/ismir2017
Attribute | Value |
---|---|
Corpus | giantsteps_tempo |
Version | 0.0.4 |
Annotation Tools | schreiber 2017, model=ismir2017, http://www.tagtraum.com/tempo_estimation.html |
Annotator, bibtex | Schreiber2017 |
schreiber2017/mirex2017
Attribute | Value |
---|---|
Corpus | giantsteps_tempo |
Version | 0.0.4 |
Annotation Tools | schreiber 2017, model=mirex2017, http://www.tagtraum.com/tempo_estimation.html |
Annotator, bibtex | Schreiber2017 |
schreiber2018/cnn
Attribute | Value |
---|---|
Corpus | giantsteps_tempo |
Version | 0.0.2 |
Data Source | Hendrik Schreiber, Meinard Müller. A Single-Step Approach to Musical Tempo Estimation Using a Convolutional Neural Network. In Proceedings of the 19th International Society for Music Information Retrieval Conference (ISMIR), Paris, France, Sept. 2018. |
Annotation Tools | schreiber tempo-cnn (model=cnn), https://github.com/hendriks73/tempo-cnn |
schreiber2018/fcn
Attribute | Value |
---|---|
Corpus | giantsteps_tempo |
Version | 0.0.2 |
Data Source | Hendrik Schreiber, Meinard Müller. A Single-Step Approach to Musical Tempo Estimation Using a Convolutional Neural Network. In Proceedings of the 19th International Society for Music Information Retrieval Conference (ISMIR), Paris, France, Sept. 2018. |
Annotation Tools | schreiber tempo-cnn (model=fcn), https://github.com/hendriks73/tempo-cnn |
schreiber2018/ismir2018
Attribute | Value |
---|---|
Corpus | giantsteps_tempo |
Version | 0.0.2 |
Data Source | Hendrik Schreiber, Meinard Müller. A Single-Step Approach to Musical Tempo Estimation Using a Convolutional Neural Network. In Proceedings of the 19th International Society for Music Information Retrieval Conference (ISMIR), Paris, France, Sept. 2018. |
Annotation Tools | schreiber tempo-cnn (model=ismir2018), https://github.com/hendriks73/tempo-cnn |
sun2021/default
Attribute | Value |
---|---|
Corpus | giantsteps_tempo |
Version | 0.0.2 |
Data Source | Xiaoheng Sun, Qiqi He, Yongwei Gao, Wei Li. Musical Tempo Estimation Using a Multi-scale Network. in Proc. of the 22nd Int. Society for Music Information Retrieval Conf., Online, 2021 |
Annotation Tools | https://github.com/Qqi-HE/TempoEstimation_MGANet |
Annotator, bibtex | Sun2021 |
Basic Statistics
Estimator | Size | Min | Max | Avg | Stdev | Sweet Oct. Start | Sweet Oct. Coverage |
---|---|---|---|---|---|---|---|
boeck2015/tempodetector2016_default | 664 | 41.10 | 214.29 | 112.49 | 37.34 | 74.00 | 0.70 |
boeck2019/multi_task | 664 | 57.49 | 201.91 | 118.32 | 26.41 | 76.00 | 0.92 |
boeck2019/multi_task_hjdb | 664 | 58.62 | 201.92 | 124.61 | 27.13 | 83.00 | 0.89 |
boeck2020/dar | 664 | 47.65 | 201.50 | 134.27 | 28.64 | 91.00 | 0.86 |
davies2009/mirex_qm_tempotracker | 664 | 63.80 | 191.41 | 115.46 | 27.09 | 84.00 | 0.89 |
percival2014/stem | 664 | 54.98 | 160.25 | 106.59 | 27.22 | 75.00 | 0.85 |
schreiber2014/default | 664 | 63.03 | 171.91 | 112.05 | 27.01 | 78.00 | 0.87 |
schreiber2017/ismir2017 | 664 | 63.50 | 176.01 | 118.57 | 27.31 | 80.00 | 0.88 |
schreiber2017/mirex2017 | 664 | 69.00 | 190.05 | 132.45 | 26.88 | 88.00 | 0.86 |
schreiber2018/cnn | 664 | 67.00 | 216.00 | 135.25 | 27.24 | 90.00 | 0.88 |
schreiber2018/fcn | 664 | 63.00 | 201.00 | 138.38 | 26.85 | 90.00 | 0.90 |
schreiber2018/ismir2018 | 664 | 69.00 | 186.00 | 129.66 | 26.96 | 89.00 | 0.84 |
sun2021/default | 664 | 58.00 | 211.00 | 139.16 | 27.57 | 94.00 | 0.90 |
Smoothed Tempo Distribution
Figure 3: Percentage of values in tempo interval.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy
Accuracy1 is defined as the percentage of correct estimates, allowing a 4% tolerance for individual BPM values.
Accuracy2 additionally permits estimates to be wrong by a factor of 2, 3, 1/2 or 1/3 (so-called octave errors).
See [Gouyon2006].
Note: When comparing accuracy values for different algorithms, keep in mind that an algorithm may have been trained on the test set or that the test set may have even been created using one of the tested algorithms.
Accuracy Results for 1.0
Estimator | Accuracy1 | Accuracy2 |
---|---|---|
sun2021/default | 0.8042 | 0.9096 |
schreiber2018/fcn | 0.7982 | 0.9066 |
schreiber2017/mirex2017 | 0.7696 | 0.8916 |
boeck2020/dar | 0.7651 | 0.8916 |
schreiber2018/cnn | 0.7636 | 0.8931 |
schreiber2018/ismir2018 | 0.7349 | 0.8946 |
boeck2019/multi_task_hjdb | 0.6913 | 0.8931 |
boeck2019/multi_task | 0.6431 | 0.8886 |
schreiber2017/ismir2017 | 0.6235 | 0.8870 |
boeck2015/tempodetector2016_default | 0.5798 | 0.8630 |
schreiber2014/default | 0.5663 | 0.8690 |
percival2014/stem | 0.5151 | 0.8855 |
davies2009/mirex_qm_tempotracker | 0.2666 | 0.4639 |
Table 3: Mean accuracy of estimates compared to version 1.0 with 4% tolerance ordered by Accuracy1.
Raw data Accuracy1: CSV JSON LATEX PICKLE
Raw data Accuracy2: CSV JSON LATEX PICKLE
Accuracy1 for 1.0
Figure 4: Mean Accuracy1 for estimates compared to version 1.0 depending on tolerance.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy2 for 1.0
Figure 5: Mean Accuracy2 for estimates compared to version 1.0 depending on tolerance.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy Results for 2.0
Estimator | Accuracy1 | Accuracy2 |
---|---|---|
schreiber2018/fcn | 0.8986 | 0.9803 |
sun2021/default | 0.8911 | 0.9849 |
boeck2020/dar | 0.8744 | 0.9697 |
schreiber2018/cnn | 0.8638 | 0.9758 |
schreiber2017/mirex2017 | 0.8260 | 0.9607 |
schreiber2018/ismir2018 | 0.8245 | 0.9758 |
boeck2019/multi_task_hjdb | 0.7670 | 0.9622 |
boeck2019/multi_task | 0.7005 | 0.9622 |
schreiber2017/ismir2017 | 0.6899 | 0.9561 |
boeck2015/tempodetector2016_default | 0.6384 | 0.9410 |
schreiber2014/default | 0.6051 | 0.9319 |
percival2014/stem | 0.5703 | 0.9607 |
davies2009/mirex_qm_tempotracker | 0.3540 | 0.5325 |
Table 4: Mean accuracy of estimates compared to version 2.0 with 4% tolerance ordered by Accuracy1.
Raw data Accuracy1: CSV JSON LATEX PICKLE
Raw data Accuracy2: CSV JSON LATEX PICKLE
Accuracy1 for 2.0
Figure 6: Mean Accuracy1 for estimates compared to version 2.0 depending on tolerance.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy2 for 2.0
Figure 7: Mean Accuracy2 for estimates compared to version 2.0 depending on tolerance.
CSV JSON LATEX PICKLE SVG PDF PNG
Differing Items
For which items did a given estimator not estimate a correct value with respect to a given ground truth? Are there items which are either very difficult, not suitable for the task, or incorrectly annotated and therefore never estimated correctly, regardless which estimator is used?
Differing Items Accuracy1
Items with different tempo annotations (Accuracy1, 4% tolerance) in different versions:
1.0 compared with boeck2015/tempodetector2016_default (279 differences): ‘1030011.LOFI’ ‘1068430.LOFI’ ‘1092771.LOFI’ ‘1177875.LOFI’ ‘1198571.LOFI’ ‘1234668.LOFI’ ‘1240669.LOFI’ ‘1240672.LOFI’ ‘1317507.LOFI’ ‘1327052.LOFI’ ‘1329955.LOFI’ … CSV
1.0 compared with boeck2019/multi_task (237 differences): ‘1068430.LOFI’ ‘1120171.LOFI’ ‘1234668.LOFI’ ‘1234669.LOFI’ ‘1240669.LOFI’ ‘1240672.LOFI’ ‘1317507.LOFI’ ‘1327052.LOFI’ ‘1329955.LOFI’ ‘1380256.LOFI’ ‘1418652.LOFI’ … CSV
1.0 compared with boeck2019/multi_task_hjdb (205 differences): ‘1068430.LOFI’ ‘1234668.LOFI’ ‘1234669.LOFI’ ‘1240672.LOFI’ ‘1317507.LOFI’ ‘1327052.LOFI’ ‘1329955.LOFI’ ‘1380256.LOFI’ ‘1418652.LOFI’ ‘1461087.LOFI’ ‘1479462.LOFI’ … CSV
1.0 compared with boeck2020/dar (156 differences): ‘1240672.LOFI’ ‘1327052.LOFI’ ‘1329955.LOFI’ ‘1380256.LOFI’ ‘1418652.LOFI’ ‘1461087.LOFI’ ‘1479462.LOFI’ ‘1728723.LOFI’ ‘1735621.LOFI’ ‘1743969.LOFI’ ‘1747518.LOFI’ … CSV
1.0 compared with davies2009/mirex_qm_tempotracker (487 differences): ‘1030011.LOFI’ ‘1068430.LOFI’ ‘1084996.LOFI’ ‘1092771.LOFI’ ‘1114156.LOFI’ ‘1118326.LOFI’ ‘1120171.LOFI’ ‘1171800.LOFI’ ‘1174239.LOFI’ ‘1177875.LOFI’ ‘1183908.LOFI’ … CSV
1.0 compared with percival2014/stem (322 differences): ‘1030011.LOFI’ ‘1068430.LOFI’ ‘1092771.LOFI’ ‘1118326.LOFI’ ‘1120171.LOFI’ ‘1174239.LOFI’ ‘1177875.LOFI’ ‘1234668.LOFI’ ‘1234669.LOFI’ ‘1240669.LOFI’ ‘1240672.LOFI’ … CSV
1.0 compared with schreiber2014/default (288 differences): ‘1068430.LOFI’ ‘1118326.LOFI’ ‘1120171.LOFI’ ‘1174239.LOFI’ ‘1177875.LOFI’ ‘1234668.LOFI’ ‘1234669.LOFI’ ‘1240669.LOFI’ ‘1240672.LOFI’ ‘1317507.LOFI’ ‘1327052.LOFI’ … CSV
1.0 compared with schreiber2017/ismir2017 (250 differences): ‘1068430.LOFI’ ‘1120171.LOFI’ ‘1234668.LOFI’ ‘1234669.LOFI’ ‘1240669.LOFI’ ‘1240672.LOFI’ ‘1317507.LOFI’ ‘1327052.LOFI’ ‘1380256.LOFI’ ‘1461087.LOFI’ ‘1479462.LOFI’ … CSV
1.0 compared with schreiber2017/mirex2017 (153 differences): ‘1234668.LOFI’ ‘1240669.LOFI’ ‘1240672.LOFI’ ‘1317507.LOFI’ ‘1327052.LOFI’ ‘1380256.LOFI’ ‘1479462.LOFI’ ‘172384.LOFI’ ‘1728723.LOFI’ ‘1735621.LOFI’ ‘1743969.LOFI’ … CSV
1.0 compared with schreiber2018/cnn (157 differences): ‘1114156.LOFI’ ‘1240669.LOFI’ ‘1240672.LOFI’ ‘1327052.LOFI’ ‘1329955.LOFI’ ‘1461087.LOFI’ ‘1479462.LOFI’ ‘1728723.LOFI’ ‘1735621.LOFI’ ‘1743969.LOFI’ ‘1747518.LOFI’ … CSV
1.0 compared with schreiber2018/fcn (134 differences): ‘1327052.LOFI’ ‘1329955.LOFI’ ‘1461087.LOFI’ ‘1479462.LOFI’ ‘1728723.LOFI’ ‘1735621.LOFI’ ‘1743969.LOFI’ ‘1765409.LOFI’ ‘1885798.LOFI’ ‘1905592.LOFI’ ‘1950701.LOFI’ … CSV
1.0 compared with schreiber2018/ismir2018 (176 differences): ‘1068430.LOFI’ ‘1327052.LOFI’ ‘1461087.LOFI’ ‘1479462.LOFI’ ‘1728723.LOFI’ ‘1735621.LOFI’ ‘1743969.LOFI’ ‘1765409.LOFI’ ‘1817444.LOFI’ ‘1855660.LOFI’ ‘1905591.LOFI’ … CSV
1.0 compared with sun2021/default (130 differences): ‘1327052.LOFI’ ‘1329955.LOFI’ ‘1418652.LOFI’ ‘1461087.LOFI’ ‘1479462.LOFI’ ‘1728723.LOFI’ ‘1735621.LOFI’ ‘1743969.LOFI’ ‘1765409.LOFI’ ‘1839656.LOFI’ ‘1874244.LOFI’ … CSV
2.0 compared with boeck2015/tempodetector2016_default (239 differences): ‘1030011.LOFI’ ‘1068430.LOFI’ ‘1092771.LOFI’ ‘1177875.LOFI’ ‘1198571.LOFI’ ‘1234668.LOFI’ ‘1240669.LOFI’ ‘1317507.LOFI’ ‘1329955.LOFI’ ‘1380256.LOFI’ ‘1418652.LOFI’ … CSV
2.0 compared with boeck2019/multi_task (198 differences): ‘1068430.LOFI’ ‘1120171.LOFI’ ‘1234668.LOFI’ ‘1234669.LOFI’ ‘1240669.LOFI’ ‘1317507.LOFI’ ‘1329955.LOFI’ ‘1380256.LOFI’ ‘1418652.LOFI’ ‘1424458.LOFI’ ‘1569136.LOFI’ … CSV
2.0 compared with boeck2019/multi_task_hjdb (154 differences): ‘1068430.LOFI’ ‘1234668.LOFI’ ‘1234669.LOFI’ ‘1317507.LOFI’ ‘1329955.LOFI’ ‘1380256.LOFI’ ‘1418652.LOFI’ ‘1728723.LOFI’ ‘1743969.LOFI’ ‘1747518.LOFI’ ‘1765409.LOFI’ … CSV
2.0 compared with boeck2020/dar (83 differences): ‘1329955.LOFI’ ‘1380256.LOFI’ ‘1418652.LOFI’ ‘1698047.LOFI’ ‘1743969.LOFI’ ‘1747518.LOFI’ ‘1874244.LOFI’ ‘2422602.LOFI’ ‘2734649.LOFI’ ‘28952.LOFI’ ‘3069960.LOFI’ … CSV
2.0 compared with davies2009/mirex_qm_tempotracker (427 differences): ‘1030011.LOFI’ ‘1068430.LOFI’ ‘1084996.LOFI’ ‘1092771.LOFI’ ‘1114156.LOFI’ ‘1118326.LOFI’ ‘1120171.LOFI’ ‘1171800.LOFI’ ‘1174239.LOFI’ ‘1177875.LOFI’ ‘1183908.LOFI’ … CSV
2.0 compared with percival2014/stem (284 differences): ‘1030011.LOFI’ ‘1068430.LOFI’ ‘1092771.LOFI’ ‘1118326.LOFI’ ‘1120171.LOFI’ ‘1174239.LOFI’ ‘1177875.LOFI’ ‘1234668.LOFI’ ‘1234669.LOFI’ ‘1240669.LOFI’ ‘1317507.LOFI’ … CSV
2.0 compared with schreiber2014/default (261 differences): ‘1068430.LOFI’ ‘1118326.LOFI’ ‘1120171.LOFI’ ‘1174239.LOFI’ ‘1177875.LOFI’ ‘1234668.LOFI’ ‘1234669.LOFI’ ‘1240669.LOFI’ ‘1317507.LOFI’ ‘1329955.LOFI’ ‘1380256.LOFI’ … CSV
2.0 compared with schreiber2017/ismir2017 (205 differences): ‘1068430.LOFI’ ‘1120171.LOFI’ ‘1234668.LOFI’ ‘1234669.LOFI’ ‘1240669.LOFI’ ‘1317507.LOFI’ ‘1380256.LOFI’ ‘1418652.LOFI’ ‘1623443.LOFI’ ‘1676961.LOFI’ ‘1728723.LOFI’ … CSV
2.0 compared with schreiber2017/mirex2017 (115 differences): ‘1234668.LOFI’ ‘1240669.LOFI’ ‘1317507.LOFI’ ‘1380256.LOFI’ ‘1418652.LOFI’ ‘1461087.LOFI’ ‘1698047.LOFI’ ‘172384.LOFI’ ‘1743969.LOFI’ ‘1747518.LOFI’ ‘1855660.LOFI’ … CSV
2.0 compared with schreiber2018/cnn (90 differences): ‘1114156.LOFI’ ‘1240669.LOFI’ ‘1329955.LOFI’ ‘1418652.LOFI’ ‘1698047.LOFI’ ‘1743969.LOFI’ ‘1874244.LOFI’ ‘1905591.LOFI’ ‘2083969.LOFI’ ‘2757093.LOFI’ ‘3023605.LOFI’ … CSV
2.0 compared with schreiber2018/fcn (67 differences): ‘1240672.LOFI’ ‘1329955.LOFI’ ‘1418652.LOFI’ ‘1698047.LOFI’ ‘1743969.LOFI’ ‘1747518.LOFI’ ‘1885798.LOFI’ ‘2083969.LOFI’ ‘2741734.LOFI’ ‘3013673.LOFI’ ‘3023605.LOFI’ … CSV
2.0 compared with schreiber2018/ismir2018 (116 differences): ‘1240672.LOFI’ ‘1418652.LOFI’ ‘1698047.LOFI’ ‘1747518.LOFI’ ‘1817444.LOFI’ ‘1855660.LOFI’ ‘1905591.LOFI’ ‘1929611.LOFI’ ‘2706792.LOFI’ ‘2734649.LOFI’ ‘2734862.LOFI’ … CSV
2.0 compared with sun2021/default (72 differences): ‘1240672.LOFI’ ‘1329955.LOFI’ ‘1418652.LOFI’ ‘1698047.LOFI’ ‘1743969.LOFI’ ‘1747518.LOFI’ ‘1839656.LOFI’ ‘1874244.LOFI’ ‘1950701.LOFI’ ‘210560.LOFI’ ‘3013772.LOFI’ … CSV
None of the estimators estimated the following 5 items ‘correctly’ using Accuracy1: ‘3630279.LOFI’ ‘3980001.LOFI’ ‘5089294.LOFI’ ‘5137154.LOFI’ ‘942357.LOFI’ CSV
Differing Items Accuracy2
Items with different tempo annotations (Accuracy2, 4% tolerance) in different versions:
1.0 compared with boeck2015/tempodetector2016_default (91 differences): ‘1240669.LOFI’ ‘1327052.LOFI’ ‘1479462.LOFI’ ‘1698047.LOFI’ ‘1728723.LOFI’ ‘1735621.LOFI’ ‘1743969.LOFI’ ‘1747518.LOFI’ ‘1905592.LOFI’ ‘1950701.LOFI’ ‘2726350.LOFI’ … CSV
1.0 compared with boeck2019/multi_task (74 differences): ‘1327052.LOFI’ ‘1329955.LOFI’ ‘1380256.LOFI’ ‘1424458.LOFI’ ‘1479462.LOFI’ ‘1728723.LOFI’ ‘1735621.LOFI’ ‘1743969.LOFI’ ‘1747518.LOFI’ ‘1905592.LOFI’ ‘2422602.LOFI’ … CSV
1.0 compared with boeck2019/multi_task_hjdb (71 differences): ‘1327052.LOFI’ ‘1329955.LOFI’ ‘1380256.LOFI’ ‘1479462.LOFI’ ‘1728723.LOFI’ ‘1735621.LOFI’ ‘1743969.LOFI’ ‘1747518.LOFI’ ‘1905592.LOFI’ ‘2039114.LOFI’ ‘2422602.LOFI’ … CSV
1.0 compared with boeck2020/dar (72 differences): ‘1327052.LOFI’ ‘1380256.LOFI’ ‘1479462.LOFI’ ‘1728723.LOFI’ ‘1735621.LOFI’ ‘1743969.LOFI’ ‘1747518.LOFI’ ‘1905592.LOFI’ ‘2422602.LOFI’ ‘2726350.LOFI’ ‘2726353.LOFI’ … CSV
1.0 compared with davies2009/mirex_qm_tempotracker (356 differences): ‘1030011.LOFI’ ‘1068430.LOFI’ ‘1084996.LOFI’ ‘1092771.LOFI’ ‘1114156.LOFI’ ‘1118326.LOFI’ ‘1120171.LOFI’ ‘1171800.LOFI’ ‘1174239.LOFI’ ‘1177875.LOFI’ ‘1183908.LOFI’ … CSV
1.0 compared with percival2014/stem (76 differences): ‘1030011.LOFI’ ‘1327052.LOFI’ ‘1329955.LOFI’ ‘1424458.LOFI’ ‘1479462.LOFI’ ‘1728723.LOFI’ ‘1735621.LOFI’ ‘1743969.LOFI’ ‘1874244.LOFI’ ‘1905592.LOFI’ ‘2432724.LOFI’ … CSV
1.0 compared with schreiber2014/default (87 differences): ‘1327052.LOFI’ ‘1380256.LOFI’ ‘1418652.LOFI’ ‘1479462.LOFI’ ‘1676961.LOFI’ ‘1735621.LOFI’ ‘1743969.LOFI’ ‘1905592.LOFI’ ‘1974485.LOFI’ ‘2676506.LOFI’ ‘2726350.LOFI’ … CSV
1.0 compared with schreiber2017/ismir2017 (75 differences): ‘1327052.LOFI’ ‘1380256.LOFI’ ‘1479462.LOFI’ ‘1728723.LOFI’ ‘1735621.LOFI’ ‘1743969.LOFI’ ‘1905592.LOFI’ ‘1974485.LOFI’ ‘2422602.LOFI’ ‘2726350.LOFI’ ‘2726353.LOFI’ … CSV
1.0 compared with schreiber2017/mirex2017 (72 differences): ‘1327052.LOFI’ ‘1380256.LOFI’ ‘1479462.LOFI’ ‘1728723.LOFI’ ‘1735621.LOFI’ ‘1743969.LOFI’ ‘1905592.LOFI’ ‘1974485.LOFI’ ‘2422602.LOFI’ ‘2726350.LOFI’ ‘2726353.LOFI’ … CSV
1.0 compared with schreiber2018/cnn (71 differences): ‘1327052.LOFI’ ‘1329955.LOFI’ ‘1479462.LOFI’ ‘1728723.LOFI’ ‘1735621.LOFI’ ‘1743969.LOFI’ ‘1874244.LOFI’ ‘1905592.LOFI’ ‘2726350.LOFI’ ‘2726353.LOFI’ ‘2726355.LOFI’ … CSV
1.0 compared with schreiber2018/fcn (62 differences): ‘1327052.LOFI’ ‘1329955.LOFI’ ‘1479462.LOFI’ ‘1728723.LOFI’ ‘1735621.LOFI’ ‘1743969.LOFI’ ‘1905592.LOFI’ ‘2726350.LOFI’ ‘2726353.LOFI’ ‘2726355.LOFI’ ‘2745205.LOFI’ … CSV
1.0 compared with schreiber2018/ismir2018 (70 differences): ‘1068430.LOFI’ ‘1327052.LOFI’ ‘1479462.LOFI’ ‘1728723.LOFI’ ‘1735621.LOFI’ ‘1743969.LOFI’ ‘1905591.LOFI’ ‘1905592.LOFI’ ‘2726350.LOFI’ ‘2726353.LOFI’ ‘2726355.LOFI’ … CSV
1.0 compared with sun2021/default (60 differences): ‘1327052.LOFI’ ‘1329955.LOFI’ ‘1418652.LOFI’ ‘1479462.LOFI’ ‘1728723.LOFI’ ‘1735621.LOFI’ ‘1743969.LOFI’ ‘1905592.LOFI’ ‘2726350.LOFI’ ‘2726353.LOFI’ ‘2726355.LOFI’ … CSV
2.0 compared with boeck2015/tempodetector2016_default (39 differences): ‘1240669.LOFI’ ‘1418652.LOFI’ ‘1747518.LOFI’ ‘3069960.LOFI’ ‘3312045.LOFI’ ‘3377892.LOFI’ ‘3414605.LOFI’ ‘3480108.LOFI’ ‘3509304.LOFI’ ‘3564559.LOFI’ ‘3630279.LOFI’ … CSV
2.0 compared with boeck2019/multi_task (25 differences): ‘1329955.LOFI’ ‘1380256.LOFI’ ‘1418652.LOFI’ ‘1424458.LOFI’ ‘1747518.LOFI’ ‘2422602.LOFI’ ‘3069960.LOFI’ ‘3480108.LOFI’ ‘3630279.LOFI’ ‘3642438.LOFI’ ‘3787878.LOFI’ … CSV
2.0 compared with boeck2019/multi_task_hjdb (25 differences): ‘1329955.LOFI’ ‘1380256.LOFI’ ‘1418652.LOFI’ ‘1747518.LOFI’ ‘2039114.LOFI’ ‘2422602.LOFI’ ‘3069960.LOFI’ ‘3480108.LOFI’ ‘3630279.LOFI’ ‘3642438.LOFI’ ‘3787878.LOFI’ … CSV
2.0 compared with boeck2020/dar (20 differences): ‘1380256.LOFI’ ‘1418652.LOFI’ ‘1747518.LOFI’ ‘2422602.LOFI’ ‘3069960.LOFI’ ‘3480108.LOFI’ ‘3630279.LOFI’ ‘3642438.LOFI’ ‘3801596.LOFI’ ‘4120277.LOFI’ ‘4237913.LOFI’ … CSV
2.0 compared with davies2009/mirex_qm_tempotracker (309 differences): ‘1030011.LOFI’ ‘1068430.LOFI’ ‘1084996.LOFI’ ‘1092771.LOFI’ ‘1114156.LOFI’ ‘1118326.LOFI’ ‘1120171.LOFI’ ‘1171800.LOFI’ ‘1174239.LOFI’ ‘1177875.LOFI’ ‘1183908.LOFI’ … CSV
2.0 compared with percival2014/stem (26 differences): ‘1030011.LOFI’ ‘1329955.LOFI’ ‘1418652.LOFI’ ‘1424458.LOFI’ ‘1874244.LOFI’ ‘2432724.LOFI’ ‘3435022.LOFI’ ‘3480108.LOFI’ ‘3565815.LOFI’ ‘3711752.LOFI’ ‘3787878.LOFI’ … CSV
2.0 compared with schreiber2014/default (45 differences): ‘1380256.LOFI’ ‘1418652.LOFI’ ‘1676961.LOFI’ ‘1728723.LOFI’ ‘1974485.LOFI’ ‘2676506.LOFI’ ‘2759853.LOFI’ ‘3013772.LOFI’ ‘3023605.LOFI’ ‘3069960.LOFI’ ‘3128068.LOFI’ … CSV
2.0 compared with schreiber2017/ismir2017 (29 differences): ‘1380256.LOFI’ ‘1418652.LOFI’ ‘1974485.LOFI’ ‘2422602.LOFI’ ‘3023605.LOFI’ ‘3069960.LOFI’ ‘3480108.LOFI’ ‘3630279.LOFI’ ‘3642438.LOFI’ ‘3692859.LOFI’ ‘3787878.LOFI’ … CSV
2.0 compared with schreiber2017/mirex2017 (26 differences): ‘1380256.LOFI’ ‘1418652.LOFI’ ‘1974485.LOFI’ ‘2422602.LOFI’ ‘3023605.LOFI’ ‘3069960.LOFI’ ‘3480108.LOFI’ ‘3630279.LOFI’ ‘3642438.LOFI’ ‘3787878.LOFI’ ‘4017611.LOFI’ … CSV
2.0 compared with schreiber2018/cnn (16 differences): ‘1329955.LOFI’ ‘1418652.LOFI’ ‘1874244.LOFI’ ‘3023605.LOFI’ ‘3069960.LOFI’ ‘3480108.LOFI’ ‘3630279.LOFI’ ‘3642438.LOFI’ ‘3787878.LOFI’ ‘4044591.LOFI’ ‘4283854.LOFI’ … CSV
2.0 compared with schreiber2018/fcn (13 differences): ‘1329955.LOFI’ ‘1418652.LOFI’ ‘3023605.LOFI’ ‘3480108.LOFI’ ‘3630279.LOFI’ ‘3642438.LOFI’ ‘3787878.LOFI’ ‘4043892.LOFI’ ‘4288893.LOFI’ ‘4332592.LOFI’ ‘5137153.LOFI’ … CSV
2.0 compared with schreiber2018/ismir2018 (16 differences): ‘1418652.LOFI’ ‘1905591.LOFI’ ‘3069960.LOFI’ ‘3189712.LOFI’ ‘3480108.LOFI’ ‘3630279.LOFI’ ‘3642438.LOFI’ ‘3787878.LOFI’ ‘4043892.LOFI’ ‘4044591.LOFI’ ‘4288893.LOFI’ … CSV
2.0 compared with sun2021/default (10 differences): ‘1329955.LOFI’ ‘1418652.LOFI’ ‘3069960.LOFI’ ‘3630279.LOFI’ ‘3787878.LOFI’ ‘4264210.LOFI’ ‘4288893.LOFI’ ‘5137153.LOFI’ ‘5137154.LOFI’ ‘906760.LOFI’ CSV
All tracks were estimated ‘correctly’ by at least one system.
Significance of Differences
Estimator | boeck2015/tempodetector2016_default | boeck2019/multi_task | boeck2019/multi_task_hjdb | boeck2020/dar | davies2009/mirex_qm_tempotracker | percival2014/stem | schreiber2014/default | schreiber2017/ismir2017 | schreiber2017/mirex2017 | schreiber2018/cnn | schreiber2018/fcn | schreiber2018/ismir2018 | sun2021/default |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
boeck2015/tempodetector2016_default | 1.0000 | 0.0011 | 0.0000 | 0.0000 | 0.0000 | 0.0026 | 0.5938 | 0.0374 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
boeck2019/multi_task | 0.0011 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2084 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
boeck2019/multi_task_hjdb | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0068 | 0.0000 |
boeck2020/dar | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.8453 | 1.0000 | 0.0189 | 0.0624 | 0.0034 |
davies2009/mirex_qm_tempotracker | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
percival2014/stem | 0.0026 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0047 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2014/default | 0.5938 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0047 | 1.0000 | 0.0009 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2017/ismir2017 | 0.0374 | 0.2084 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0009 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2017/mirex2017 | 0.0000 | 0.0000 | 0.0000 | 0.8453 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.7728 | 0.0648 | 0.0255 | 0.0368 |
schreiber2018/cnn | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.7728 | 1.0000 | 0.0044 | 0.0536 | 0.0048 |
schreiber2018/fcn | 0.0000 | 0.0000 | 0.0000 | 0.0189 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0648 | 0.0044 | 1.0000 | 0.0000 | 0.6985 |
schreiber2018/ismir2018 | 0.0000 | 0.0000 | 0.0068 | 0.0624 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0255 | 0.0536 | 0.0000 | 1.0000 | 0.0000 |
sun2021/default | 0.0000 | 0.0000 | 0.0000 | 0.0034 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0368 | 0.0048 | 0.6985 | 0.0000 | 1.0000 |
Table 5: McNemar p-values, using reference annotations 1.0 as groundtruth with Accuracy1 [Gouyon2006]. H0: both estimators disagree with the groundtruth to the same amount. If p<=ɑ, reject H0, i.e. we have a significant difference in the disagreement with the groundtruth. In the table, p-values<0.05 are set in bold.
Estimator | boeck2015/tempodetector2016_default | boeck2019/multi_task | boeck2019/multi_task_hjdb | boeck2020/dar | davies2009/mirex_qm_tempotracker | percival2014/stem | schreiber2014/default | schreiber2017/ismir2017 | schreiber2017/mirex2017 | schreiber2018/cnn | schreiber2018/fcn | schreiber2018/ismir2018 | sun2021/default |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
boeck2015/tempodetector2016_default | 1.0000 | 0.0022 | 0.0000 | 0.0000 | 0.0000 | 0.0022 | 0.1716 | 0.0172 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
boeck2019/multi_task | 0.0022 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.5248 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
boeck2019/multi_task_hjdb | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0007 | 0.0000 | 0.0000 | 0.0004 | 0.0000 |
boeck2020/dar | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0029 | 0.5102 | 0.0976 | 0.0016 | 0.2418 |
davies2009/mirex_qm_tempotracker | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
percival2014/stem | 0.0022 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0620 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2014/default | 0.1716 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0620 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2017/ismir2017 | 0.0172 | 0.5248 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2017/mirex2017 | 0.0000 | 0.0000 | 0.0007 | 0.0029 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0215 | 0.0000 | 1.0000 | 0.0001 |
schreiber2018/cnn | 0.0000 | 0.0000 | 0.0000 | 0.5102 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0215 | 1.0000 | 0.0059 | 0.0099 | 0.0700 |
schreiber2018/fcn | 0.0000 | 0.0000 | 0.0000 | 0.0976 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0059 | 1.0000 | 0.0000 | 0.6198 |
schreiber2018/ismir2018 | 0.0000 | 0.0000 | 0.0004 | 0.0016 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0099 | 0.0000 | 1.0000 | 0.0000 |
sun2021/default | 0.0000 | 0.0000 | 0.0000 | 0.2418 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0700 | 0.6198 | 0.0000 | 1.0000 |
Table 6: McNemar p-values, using reference annotations 2.0 as groundtruth with Accuracy1 [Gouyon2006]. H0: both estimators disagree with the groundtruth to the same amount. If p<=ɑ, reject H0, i.e. we have a significant difference in the disagreement with the groundtruth. In the table, p-values<0.05 are set in bold.
Estimator | boeck2015/tempodetector2016_default | boeck2019/multi_task | boeck2019/multi_task_hjdb | boeck2020/dar | davies2009/mirex_qm_tempotracker | percival2014/stem | schreiber2014/default | schreiber2017/ismir2017 | schreiber2017/mirex2017 | schreiber2018/cnn | schreiber2018/fcn | schreiber2018/ismir2018 | sun2021/default |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
boeck2015/tempodetector2016_default | 1.0000 | 0.0076 | 0.0012 | 0.0034 | 0.0000 | 0.0444 | 0.6936 | 0.0166 | 0.0043 | 0.0022 | 0.0000 | 0.0015 | 0.0000 |
boeck2019/multi_task | 0.0076 | 1.0000 | 0.5078 | 0.7744 | 0.0000 | 0.8555 | 0.0789 | 1.0000 | 0.8388 | 0.6636 | 0.0118 | 0.5413 | 0.0005 |
boeck2019/multi_task_hjdb | 0.0012 | 0.5078 | 1.0000 | 1.0000 | 0.0000 | 0.4731 | 0.0293 | 0.5235 | 1.0000 | 1.0000 | 0.0784 | 1.0000 | 0.0127 |
boeck2020/dar | 0.0034 | 0.7744 | 1.0000 | 1.0000 | 0.0000 | 0.6076 | 0.0400 | 0.6636 | 1.0000 | 1.0000 | 0.0525 | 0.8388 | 0.0118 |
davies2009/mirex_qm_tempotracker | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
percival2014/stem | 0.0444 | 0.8555 | 0.4731 | 0.6076 | 0.0000 | 1.0000 | 0.1690 | 1.0000 | 0.5966 | 0.4049 | 0.0043 | 0.3771 | 0.0025 |
schreiber2014/default | 0.6936 | 0.0789 | 0.0293 | 0.0400 | 0.0000 | 0.1690 | 1.0000 | 0.0576 | 0.0167 | 0.0195 | 0.0001 | 0.0161 | 0.0000 |
schreiber2017/ismir2017 | 0.0166 | 1.0000 | 0.5235 | 0.6636 | 0.0000 | 1.0000 | 0.0576 | 1.0000 | 0.2500 | 0.5235 | 0.0044 | 0.3833 | 0.0015 |
schreiber2017/mirex2017 | 0.0043 | 0.8388 | 1.0000 | 1.0000 | 0.0000 | 0.5966 | 0.0167 | 0.2500 | 1.0000 | 1.0000 | 0.0213 | 0.8145 | 0.0075 |
schreiber2018/cnn | 0.0022 | 0.6636 | 1.0000 | 1.0000 | 0.0000 | 0.4049 | 0.0195 | 0.5235 | 1.0000 | 1.0000 | 0.0117 | 1.0000 | 0.0034 |
schreiber2018/fcn | 0.0000 | 0.0118 | 0.0784 | 0.0525 | 0.0000 | 0.0043 | 0.0001 | 0.0044 | 0.0213 | 0.0117 | 1.0000 | 0.0386 | 0.7539 |
schreiber2018/ismir2018 | 0.0015 | 0.5413 | 1.0000 | 0.8388 | 0.0000 | 0.3771 | 0.0161 | 0.3833 | 0.8145 | 1.0000 | 0.0386 | 1.0000 | 0.0129 |
sun2021/default | 0.0000 | 0.0005 | 0.0127 | 0.0118 | 0.0000 | 0.0025 | 0.0000 | 0.0015 | 0.0075 | 0.0034 | 0.7539 | 0.0129 | 1.0000 |
Table 7: McNemar p-values, using reference annotations 1.0 as groundtruth with Accuracy2 [Gouyon2006]. H0: both estimators disagree with the groundtruth to the same amount. If p<=ɑ, reject H0, i.e. we have a significant difference in the disagreement with the groundtruth. In the table, p-values<0.05 are set in bold.
Estimator | boeck2015/tempodetector2016_default | boeck2019/multi_task | boeck2019/multi_task_hjdb | boeck2020/dar | davies2009/mirex_qm_tempotracker | percival2014/stem | schreiber2014/default | schreiber2017/ismir2017 | schreiber2017/mirex2017 | schreiber2018/cnn | schreiber2018/fcn | schreiber2018/ismir2018 | sun2021/default |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
boeck2015/tempodetector2016_default | 1.0000 | 0.0243 | 0.0243 | 0.0013 | 0.0000 | 0.0725 | 0.5044 | 0.1433 | 0.0533 | 0.0003 | 0.0000 | 0.0002 | 0.0000 |
boeck2019/multi_task | 0.0243 | 1.0000 | 1.0000 | 0.2266 | 0.0000 | 1.0000 | 0.0045 | 0.5235 | 1.0000 | 0.0784 | 0.0075 | 0.0784 | 0.0001 |
boeck2019/multi_task_hjdb | 0.0243 | 1.0000 | 1.0000 | 0.2266 | 0.0000 | 1.0000 | 0.0045 | 0.5235 | 1.0000 | 0.0784 | 0.0075 | 0.0636 | 0.0001 |
boeck2020/dar | 0.0013 | 0.2266 | 0.2266 | 1.0000 | 0.0000 | 0.3616 | 0.0002 | 0.0784 | 0.2863 | 0.5034 | 0.1435 | 0.4807 | 0.0213 |
davies2009/mirex_qm_tempotracker | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
percival2014/stem | 0.0725 | 1.0000 | 1.0000 | 0.3616 | 0.0000 | 1.0000 | 0.0127 | 0.7283 | 1.0000 | 0.0639 | 0.0072 | 0.0987 | 0.0004 |
schreiber2014/default | 0.5044 | 0.0045 | 0.0045 | 0.0002 | 0.0000 | 0.0127 | 1.0000 | 0.0052 | 0.0009 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2017/ismir2017 | 0.1433 | 0.5235 | 0.5235 | 0.0784 | 0.0000 | 0.7283 | 0.0052 | 1.0000 | 0.2500 | 0.0106 | 0.0001 | 0.0072 | 0.0001 |
schreiber2017/mirex2017 | 0.0533 | 1.0000 | 1.0000 | 0.2863 | 0.0000 | 1.0000 | 0.0009 | 0.2500 | 1.0000 | 0.0414 | 0.0010 | 0.0309 | 0.0004 |
schreiber2018/cnn | 0.0003 | 0.0784 | 0.0784 | 0.5034 | 0.0000 | 0.0639 | 0.0000 | 0.0106 | 0.0414 | 1.0000 | 0.5488 | 1.0000 | 0.1460 |
schreiber2018/fcn | 0.0000 | 0.0075 | 0.0075 | 0.1435 | 0.0000 | 0.0072 | 0.0000 | 0.0001 | 0.0010 | 0.5488 | 1.0000 | 0.5488 | 0.4531 |
schreiber2018/ismir2018 | 0.0002 | 0.0784 | 0.0636 | 0.4807 | 0.0000 | 0.0987 | 0.0000 | 0.0072 | 0.0309 | 1.0000 | 0.5488 | 1.0000 | 0.1460 |
sun2021/default | 0.0000 | 0.0001 | 0.0001 | 0.0213 | 0.0000 | 0.0004 | 0.0000 | 0.0001 | 0.0004 | 0.1460 | 0.4531 | 0.1460 | 1.0000 |
Table 8: McNemar p-values, using reference annotations 2.0 as groundtruth with Accuracy2 [Gouyon2006]. H0: both estimators disagree with the groundtruth to the same amount. If p<=ɑ, reject H0, i.e. we have a significant difference in the disagreement with the groundtruth. In the table, p-values<0.05 are set in bold.
Accuracy1 on Tempo-Subsets
How well does an estimator perform, when only taking a subset of the reference annotations into account? The graphs show mean Accuracy1 for reference subsets with tempi in [T-10,T+10] BPM. Note that the graphs do not show confidence intervals and that some values may be based on very few estimates.
Accuracy1 on Tempo-Subsets for 1.0
Figure 8: Mean Accuracy1 for estimates compared to version 1.0 for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy1 on Tempo-Subsets for 2.0
Figure 9: Mean Accuracy1 for estimates compared to version 2.0 for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy2 on Tempo-Subsets
How well does an estimator perform, when only taking a subset of the reference annotations into account? The graphs show mean Accuracy2 for reference subsets with tempi in [T-10,T+10] BPM. Note that the graphs do not show confidence intervals and that some values may be based on very few estimates.
Accuracy2 on Tempo-Subsets for 1.0
Figure 10: Mean Accuracy2 for estimates compared to version 1.0 for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy2 on Tempo-Subsets for 2.0
Figure 11: Mean Accuracy2 for estimates compared to version 2.0 for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated Accuracy1 for Tempo
When fitting a generalized additive model (GAM) to Accuracy1-values and a ground truth, what Accuracy1 can we expect with confidence?
Estimated Accuracy1 for Tempo for 1.0
Predictions of GAMs trained on Accuracy1 for estimates for reference 1.0.
Figure 12: Accuracy1 predictions of a generalized additive model (GAM) fit to Accuracy1 results for 1.0. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated Accuracy1 for Tempo for 2.0
Predictions of GAMs trained on Accuracy1 for estimates for reference 2.0.
Figure 13: Accuracy1 predictions of a generalized additive model (GAM) fit to Accuracy1 results for 2.0. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated Accuracy2 for Tempo
When fitting a generalized additive model (GAM) to Accuracy2-values and a ground truth, what Accuracy2 can we expect with confidence?
Estimated Accuracy2 for Tempo for 1.0
Predictions of GAMs trained on Accuracy2 for estimates for reference 1.0.
Figure 14: Accuracy2 predictions of a generalized additive model (GAM) fit to Accuracy2 results for 1.0. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated Accuracy2 for Tempo for 2.0
Predictions of GAMs trained on Accuracy2 for estimates for reference 2.0.
Figure 15: Accuracy2 predictions of a generalized additive model (GAM) fit to Accuracy2 results for 2.0. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy1 for ‘tag_open’ Tags
How well does an estimator perform, when only taking tracks into account that are tagged with some kind of label? Note that some values may be based on very few estimates.
Accuracy1 for ‘tag_open’ Tags for 1.0
Figure 16: Mean Accuracy1 of estimates compared to version 1.0 depending on tag from namespace ‘tag_open’.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy1 for ‘tag_open’ Tags for 2.0
Figure 17: Mean Accuracy1 of estimates compared to version 2.0 depending on tag from namespace ‘tag_open’.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy2 for ‘tag_open’ Tags
How well does an estimator perform, when only taking tracks into account that are tagged with some kind of label? Note that some values may be based on very few estimates.
Accuracy2 for ‘tag_open’ Tags for 1.0
Figure 18: Mean Accuracy2 of estimates compared to version 1.0 depending on tag from namespace ‘tag_open’.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy2 for ‘tag_open’ Tags for 2.0
Figure 19: Mean Accuracy2 of estimates compared to version 2.0 depending on tag from namespace ‘tag_open’.
CSV JSON LATEX PICKLE SVG PDF PNG
MIREX-Style Evaluation
P-Score is defined as the average of two tempi weighted by their perceptual strength, allowing an 8% tolerance for both tempo values [MIREX 2006 Definition].
One Correct is the fraction of estimate pairs of which at least one of the two values is equal to a reference value (within an 8% tolerance).
Both Correct is the fraction of estimate pairs of which both values are equal to the reference values (within an 8% tolerance).
See [McKinney2007].
Note: Very few datasets actually have multiple annotations per track along with a salience distributions. References without suitable annotations are not shown.
MIREX Results for 2.0
Estimator | P-Score | One Correct | Both Correct |
---|---|---|---|
schreiber2018/cnn | 0.9636 | 0.9955 | 0.6354 |
schreiber2018/fcn | 0.9572 | 0.9939 | 0.6157 |
schreiber2018/ismir2018 | 0.9564 | 0.9924 | 0.6142 |
schreiber2017/mirex2017 | 0.9537 | 0.9879 | 0.6384 |
boeck2019/multi_task_hjdb | 0.9466 | 0.9924 | 0.6006 |
schreiber2017/ismir2017 | 0.9446 | 0.9758 | 0.6369 |
boeck2020/dar | 0.9436 | 0.9834 | 0.5567 |
boeck2019/multi_task | 0.9268 | 0.9834 | 0.5643 |
schreiber2014/default | 0.9119 | 0.9531 | 0.6021 |
sun2021/default | 0.8452 | 0.9879 | 0.1528 |
boeck2015/tempodetector2016_default | 0.8442 | 0.9818 | 0.3132 |
percival2014/stem | 0.5909 | 0.8956 | 0.0408 |
davies2009/mirex_qm_tempotracker | 0.4060 | 0.5507 | 0.2148 |
Table 9: Compared to 2.0 with 8.0% tolerance.
Raw data P-Score: CSV JSON LATEX PICKLE
Raw data One Correct: CSV JSON LATEX PICKLE
Raw data Both Correct: CSV JSON LATEX PICKLE
P-Score for 2.0
Figure 20: Mean P-Score for estimates compared to version 2.0 depending on tolerance.
CSV JSON LATEX PICKLE SVG PDF PNG
One Correct for 2.0
Figure 21: Mean One Correct for estimates compared to version 2.0 depending on tolerance.
CSV JSON LATEX PICKLE SVG PDF PNG
Both Correct for 2.0
Figure 22: Mean Both Correct for estimates compared to version 2.0 depending on tolerance.
CSV JSON LATEX PICKLE SVG PDF PNG
P-Score on Tempo-Subsets
How well does an estimator perform, when only taking a subset of the reference annotations into account? The graphs show mean P-Score for reference subsets with tempi in [T-10,T+10] BPM. Note that the graphs do not show confidence intervals and that some values may be based on very few estimates.
P-Score on Tempo-Subsets for 1.0
Figure 23: Mean P-Score for estimates compared to version 1.0 for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
P-Score on Tempo-Subsets for 2.0
Figure 24: Mean P-Score for estimates compared to version 2.0 for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
One Correct on Tempo-Subsets
How well does an estimator perform, when only taking a subset of the reference annotations into account? The graphs show mean One Correct for reference subsets with tempi in [T-10,T+10] BPM. Note that the graphs do not show confidence intervals and that some values may be based on very few estimates.
One Correct on Tempo-Subsets for 1.0
Figure 25: Mean One Correct for estimates compared to version 1.0 for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
One Correct on Tempo-Subsets for 2.0
Figure 26: Mean One Correct for estimates compared to version 2.0 for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
Both Correct on Tempo-Subsets
How well does an estimator perform, when only taking a subset of the reference annotations into account? The graphs show mean Both Correct for reference subsets with tempi in [T-10,T+10] BPM. Note that the graphs do not show confidence intervals and that some values may be based on very few estimates.
Both Correct on Tempo-Subsets for 1.0
Figure 27: Mean Both Correct for estimates compared to version 1.0 for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
Both Correct on Tempo-Subsets for 2.0
Figure 28: Mean Both Correct for estimates compared to version 2.0 for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated P-Score for Tempo
When fitting a generalized additive model (GAM) to P-Score-values and a ground truth, what P-Score can we expect with confidence?
Estimated P-Score for Tempo for 1.0
Predictions of GAMs trained on P-Score for estimates for reference 1.0.
Figure 29: P-Score predictions of a generalized additive model (GAM) fit to P-Score results for 1.0. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated P-Score for Tempo for 2.0
Predictions of GAMs trained on P-Score for estimates for reference 2.0.
Figure 30: P-Score predictions of a generalized additive model (GAM) fit to P-Score results for 2.0. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated One Correct for Tempo
When fitting a generalized additive model (GAM) to One Correct-values and a ground truth, what One Correct can we expect with confidence?
Estimated One Correct for Tempo for 1.0
Predictions of GAMs trained on One Correct for estimates for reference 1.0.
Figure 31: One Correct predictions of a generalized additive model (GAM) fit to One Correct results for 1.0. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated One Correct for Tempo for 2.0
Predictions of GAMs trained on One Correct for estimates for reference 2.0.
Figure 32: One Correct predictions of a generalized additive model (GAM) fit to One Correct results for 2.0. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated Both Correct for Tempo
When fitting a generalized additive model (GAM) to Both Correct-values and a ground truth, what Both Correct can we expect with confidence?
Estimated Both Correct for Tempo for 1.0
Predictions of GAMs trained on Both Correct for estimates for reference 1.0.
Figure 33: Both Correct predictions of a generalized additive model (GAM) fit to Both Correct results for 1.0. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated Both Correct for Tempo for 2.0
Predictions of GAMs trained on Both Correct for estimates for reference 2.0.
Figure 34: Both Correct predictions of a generalized additive model (GAM) fit to Both Correct results for 2.0. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
P-Score for ‘tag_open’ Tags
How well does an estimator perform, when only taking tracks into account that are tagged with some kind of label? Note that some values may be based on very few estimates.
P-Score for ‘tag_open’ Tags for 1.0
Figure 35: Mean P-Score of estimates compared to version 1.0 depending on tag from namespace ‘tag_open’.
CSV JSON LATEX PICKLE SVG PDF PNG
P-Score for ‘tag_open’ Tags for 2.0
Figure 36: Mean P-Score of estimates compared to version 2.0 depending on tag from namespace ‘tag_open’.
CSV JSON LATEX PICKLE SVG PDF PNG
One Correct for ‘tag_open’ Tags
How well does an estimator perform, when only taking tracks into account that are tagged with some kind of label? Note that some values may be based on very few estimates.
One Correct for ‘tag_open’ Tags for 1.0
Figure 37: Mean One Correct of estimates compared to version 1.0 depending on tag from namespace ‘tag_open’.
CSV JSON LATEX PICKLE SVG PDF PNG
One Correct for ‘tag_open’ Tags for 2.0
Figure 38: Mean One Correct of estimates compared to version 2.0 depending on tag from namespace ‘tag_open’.
CSV JSON LATEX PICKLE SVG PDF PNG
Both Correct for ‘tag_open’ Tags
How well does an estimator perform, when only taking tracks into account that are tagged with some kind of label? Note that some values may be based on very few estimates.
Both Correct for ‘tag_open’ Tags for 1.0
Figure 39: Mean Both Correct of estimates compared to version 1.0 depending on tag from namespace ‘tag_open’.
CSV JSON LATEX PICKLE SVG PDF PNG
Both Correct for ‘tag_open’ Tags for 2.0
Figure 40: Mean Both Correct of estimates compared to version 2.0 depending on tag from namespace ‘tag_open’.
CSV JSON LATEX PICKLE SVG PDF PNG
OE1 and OE2
OE1 is defined as octave error between an estimate E
and a reference value R
.This means that the most common errors—by a factor of 2 or ½—have the same magnitude, namely 1: OE2(E) = log2(E/R)
.
OE2 is the signed OE1 corresponding to the minimum absolute OE1 allowing the octaveerrors 2, 3, 1/2, and 1/3: OE2(E) = arg minx(|x|) with x ∈ {OE1(E), OE1(2E), OE1(3E), OE1(½E), OE1(⅓E)}
Mean OE1/OE2 Results for 1.0
Estimator | OE1_MEAN | OE1_STDEV | OE2_MEAN | OE2_STDEV |
---|---|---|---|---|
sun2021/default | 0.0294 | 0.3648 | -0.0089 | 0.0856 |
schreiber2018/fcn | 0.0231 | 0.3658 | -0.0025 | 0.0874 |
schreiber2017/mirex2017 | -0.0423 | 0.3815 | -0.0055 | 0.0939 |
boeck2020/dar | -0.0276 | 0.3905 | -0.0060 | 0.0932 |
schreiber2018/cnn | -0.0118 | 0.3910 | -0.0052 | 0.0981 |
schreiber2018/ismir2018 | -0.0744 | 0.4236 | -0.0045 | 0.0917 |
boeck2019/multi_task_hjdb | -0.1351 | 0.4633 | 0.0028 | 0.0978 |
boeck2019/multi_task | -0.2110 | 0.4819 | 0.0017 | 0.0995 |
schreiber2017/ismir2017 | -0.2106 | 0.4933 | -0.0043 | 0.0971 |
schreiber2014/default | -0.2953 | 0.4982 | -0.0056 | 0.1088 |
percival2014/stem | -0.3716 | 0.5215 | 0.0130 | 0.1003 |
davies2009/mirex_qm_tempotracker | -0.2466 | 0.5271 | 0.1751 | 0.2304 |
boeck2015/tempodetector2016_default | -0.3380 | 0.6087 | -0.0163 | 0.1192 |
Table 10: Mean OE1/OE2 for estimates compared to version 1.0 ordered by standard deviation.
Raw data OE1: CSV JSON LATEX PICKLE
Raw data OE2: CSV JSON LATEX PICKLE
OE1 distribution for 1.0
Figure 41: OE1 for estimates compared to version 1.0. Shown are the mean OE1 and an empirical distribution of the sample, using kernel density estimation (KDE).
CSV JSON LATEX PICKLE SVG PDF PNG
OE2 distribution for 1.0
Figure 42: OE2 for estimates compared to version 1.0. Shown are the mean OE2 and an empirical distribution of the sample, using kernel density estimation (KDE).
CSV JSON LATEX PICKLE SVG PDF PNG
Mean OE1/OE2 Results for 2.0
Estimator | OE1_MEAN | OE1_STDEV | OE2_MEAN | OE2_STDEV |
---|---|---|---|---|
schreiber2018/fcn | -0.0020 | 0.2935 | 0.0010 | 0.0465 |
boeck2020/dar | -0.0520 | 0.3224 | -0.0018 | 0.0588 |
sun2021/default | 0.0035 | 0.3269 | -0.0019 | 0.0423 |
schreiber2018/cnn | -0.0388 | 0.3414 | 0.0005 | 0.0568 |
schreiber2017/mirex2017 | -0.0676 | 0.3735 | -0.0041 | 0.0648 |
schreiber2018/ismir2018 | -0.1022 | 0.3833 | -0.0008 | 0.0541 |
boeck2019/multi_task_hjdb | -0.1596 | 0.4231 | 0.0077 | 0.0659 |
boeck2019/multi_task | -0.2358 | 0.4676 | 0.0056 | 0.0682 |
schreiber2017/ismir2017 | -0.2367 | 0.4709 | -0.0037 | 0.0691 |
davies2009/mirex_qm_tempotracker | -0.2755 | 0.4871 | 0.1805 | 0.2200 |
percival2014/stem | -0.3978 | 0.4936 | 0.0121 | 0.0723 |
schreiber2014/default | -0.3239 | 0.4941 | -0.0046 | 0.0874 |
boeck2015/tempodetector2016_default | -0.3658 | 0.5811 | -0.0120 | 0.0920 |
Table 11: Mean OE1/OE2 for estimates compared to version 2.0 ordered by standard deviation.
Raw data OE1: CSV JSON LATEX PICKLE
Raw data OE2: CSV JSON LATEX PICKLE
OE1 distribution for 2.0
Figure 43: OE1 for estimates compared to version 2.0. Shown are the mean OE1 and an empirical distribution of the sample, using kernel density estimation (KDE).
CSV JSON LATEX PICKLE SVG PDF PNG
OE2 distribution for 2.0
Figure 44: OE2 for estimates compared to version 2.0. Shown are the mean OE2 and an empirical distribution of the sample, using kernel density estimation (KDE).
CSV JSON LATEX PICKLE SVG PDF PNG
Significance of Differences
Estimator | boeck2015/tempodetector2016_default | boeck2019/multi_task | boeck2019/multi_task_hjdb | boeck2020/dar | davies2009/mirex_qm_tempotracker | percival2014/stem | schreiber2014/default | schreiber2017/ismir2017 | schreiber2017/mirex2017 | schreiber2018/cnn | schreiber2018/fcn | schreiber2018/ismir2018 | sun2021/default |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
boeck2015/tempodetector2016_default | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.1542 | 0.0921 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
boeck2019/multi_task | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0571 | 0.0000 | 0.0000 | 0.9816 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
boeck2019/multi_task_hjdb | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0000 |
boeck2020/dar | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.3335 | 0.2459 | 0.0002 | 0.0017 | 0.0000 |
davies2009/mirex_qm_tempotracker | 0.0001 | 0.0571 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0080 | 0.0533 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
percival2014/stem | 0.1542 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2014/default | 0.0921 | 0.0000 | 0.0000 | 0.0000 | 0.0080 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2017/ismir2017 | 0.0000 | 0.9816 | 0.0000 | 0.0000 | 0.0533 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2017/mirex2017 | 0.0000 | 0.0000 | 0.0000 | 0.3335 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0438 | 0.0000 | 0.0254 | 0.0000 |
schreiber2018/cnn | 0.0000 | 0.0000 | 0.0000 | 0.2459 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0438 | 1.0000 | 0.0031 | 0.0000 | 0.0035 |
schreiber2018/fcn | 0.0000 | 0.0000 | 0.0000 | 0.0002 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0031 | 1.0000 | 0.0000 | 0.6052 |
schreiber2018/ismir2018 | 0.0000 | 0.0000 | 0.0001 | 0.0017 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0254 | 0.0000 | 0.0000 | 1.0000 | 0.0000 |
sun2021/default | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0035 | 0.6052 | 0.0000 | 1.0000 |
Table 12: Paired t-test p-values, using reference annotations 1.0 as groundtruth with OE1. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.
Estimator | boeck2015/tempodetector2016_default | boeck2019/multi_task | boeck2019/multi_task_hjdb | boeck2020/dar | davies2009/mirex_qm_tempotracker | percival2014/stem | schreiber2014/default | schreiber2017/ismir2017 | schreiber2017/mirex2017 | schreiber2018/cnn | schreiber2018/fcn | schreiber2018/ismir2018 | sun2021/default |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
boeck2015/tempodetector2016_default | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0002 | 0.1738 | 0.0968 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
boeck2019/multi_task | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0334 | 0.0000 | 0.0000 | 0.9492 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
boeck2019/multi_task_hjdb | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0002 | 0.0000 |
boeck2020/dar | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.3023 | 0.3297 | 0.0002 | 0.0007 | 0.0000 |
davies2009/mirex_qm_tempotracker | 0.0002 | 0.0334 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0086 | 0.0371 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
percival2014/stem | 0.1738 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2014/default | 0.0968 | 0.0000 | 0.0000 | 0.0000 | 0.0086 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2017/ismir2017 | 0.0000 | 0.9492 | 0.0000 | 0.0000 | 0.0371 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2017/mirex2017 | 0.0000 | 0.0000 | 0.0000 | 0.3023 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0563 | 0.0000 | 0.0159 | 0.0000 |
schreiber2018/cnn | 0.0000 | 0.0000 | 0.0000 | 0.3297 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0563 | 1.0000 | 0.0017 | 0.0000 | 0.0026 |
schreiber2018/fcn | 0.0000 | 0.0000 | 0.0000 | 0.0002 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0017 | 1.0000 | 0.0000 | 0.6498 |
schreiber2018/ismir2018 | 0.0000 | 0.0000 | 0.0002 | 0.0007 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0159 | 0.0000 | 0.0000 | 1.0000 | 0.0000 |
sun2021/default | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0026 | 0.6498 | 0.0000 | 1.0000 |
Table 13: Paired t-test p-values, using reference annotations 2.0 as groundtruth with OE1. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.
Estimator | boeck2015/tempodetector2016_default | boeck2019/multi_task | boeck2019/multi_task_hjdb | boeck2020/dar | davies2009/mirex_qm_tempotracker | percival2014/stem | schreiber2014/default | schreiber2017/ismir2017 | schreiber2017/mirex2017 | schreiber2018/cnn | schreiber2018/fcn | schreiber2018/ismir2018 | sun2021/default |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
boeck2015/tempodetector2016_default | 1.0000 | 0.0000 | 0.0000 | 0.0167 | 0.0000 | 0.0000 | 0.0357 | 0.0096 | 0.0233 | 0.0200 | 0.0018 | 0.0095 | 0.0870 |
boeck2019/multi_task | 0.0000 | 1.0000 | 0.5670 | 0.0002 | 0.0000 | 0.0013 | 0.0794 | 0.0541 | 0.0263 | 0.0390 | 0.1616 | 0.0259 | 0.0002 |
boeck2019/multi_task_hjdb | 0.0000 | 0.5670 | 1.0000 | 0.0004 | 0.0000 | 0.0060 | 0.0331 | 0.0334 | 0.0102 | 0.0100 | 0.0515 | 0.0027 | 0.0000 |
boeck2020/dar | 0.0167 | 0.0002 | 0.0004 | 1.0000 | 0.0000 | 0.0000 | 0.9142 | 0.5475 | 0.8776 | 0.7724 | 0.2084 | 0.5476 | 0.2777 |
davies2009/mirex_qm_tempotracker | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
percival2014/stem | 0.0000 | 0.0013 | 0.0060 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2014/default | 0.0357 | 0.0794 | 0.0331 | 0.9142 | 0.0000 | 0.0000 | 1.0000 | 0.7006 | 0.9942 | 0.9175 | 0.3962 | 0.7899 | 0.3801 |
schreiber2017/ismir2017 | 0.0096 | 0.0541 | 0.0334 | 0.5475 | 0.0000 | 0.0000 | 0.7006 | 1.0000 | 0.3385 | 0.7779 | 0.5219 | 0.9417 | 0.1427 |
schreiber2017/mirex2017 | 0.0233 | 0.0263 | 0.0102 | 0.8776 | 0.0000 | 0.0000 | 0.9942 | 0.3385 | 1.0000 | 0.8900 | 0.2295 | 0.7191 | 0.2396 |
schreiber2018/cnn | 0.0200 | 0.0390 | 0.0100 | 0.7724 | 0.0000 | 0.0000 | 0.9175 | 0.7779 | 0.8900 | 1.0000 | 0.2475 | 0.8119 | 0.1152 |
schreiber2018/fcn | 0.0018 | 0.1616 | 0.0515 | 0.2084 | 0.0000 | 0.0000 | 0.3962 | 0.5219 | 0.2295 | 0.2475 | 1.0000 | 0.3874 | 0.0093 |
schreiber2018/ismir2018 | 0.0095 | 0.0259 | 0.0027 | 0.5476 | 0.0000 | 0.0000 | 0.7899 | 0.9417 | 0.7191 | 0.8119 | 0.3874 | 1.0000 | 0.0804 |
sun2021/default | 0.0870 | 0.0002 | 0.0000 | 0.2777 | 0.0000 | 0.0000 | 0.3801 | 0.1427 | 0.2396 | 0.1152 | 0.0093 | 0.0804 | 1.0000 |
Table 14: Paired t-test p-values, using reference annotations 1.0 as groundtruth with OE2. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.
Estimator | boeck2015/tempodetector2016_default | boeck2019/multi_task | boeck2019/multi_task_hjdb | boeck2020/dar | davies2009/mirex_qm_tempotracker | percival2014/stem | schreiber2014/default | schreiber2017/ismir2017 | schreiber2017/mirex2017 | schreiber2018/cnn | schreiber2018/fcn | schreiber2018/ismir2018 | sun2021/default |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
boeck2015/tempodetector2016_default | 1.0000 | 0.0000 | 0.0000 | 0.0040 | 0.0000 | 0.0000 | 0.0994 | 0.0302 | 0.0398 | 0.0014 | 0.0006 | 0.0050 | 0.0045 |
boeck2019/multi_task | 0.0000 | 1.0000 | 0.2759 | 0.0002 | 0.0000 | 0.0524 | 0.0061 | 0.0003 | 0.0002 | 0.0537 | 0.0670 | 0.0246 | 0.0005 |
boeck2019/multi_task_hjdb | 0.0000 | 0.2759 | 1.0000 | 0.0000 | 0.0000 | 0.1933 | 0.0008 | 0.0000 | 0.0000 | 0.0048 | 0.0055 | 0.0016 | 0.0000 |
boeck2020/dar | 0.0040 | 0.0002 | 0.0000 | 1.0000 | 0.0000 | 0.0001 | 0.4403 | 0.4434 | 0.3685 | 0.3747 | 0.2543 | 0.7125 | 0.9723 |
davies2009/mirex_qm_tempotracker | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
percival2014/stem | 0.0000 | 0.0524 | 0.1933 | 0.0001 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0002 | 0.0001 | 0.0000 |
schreiber2014/default | 0.0994 | 0.0061 | 0.0008 | 0.4403 | 0.0000 | 0.0000 | 1.0000 | 0.7546 | 0.8456 | 0.1341 | 0.0800 | 0.2735 | 0.4313 |
schreiber2017/ismir2017 | 0.0302 | 0.0003 | 0.0000 | 0.4434 | 0.0000 | 0.0000 | 0.7546 | 1.0000 | 0.7106 | 0.0891 | 0.0289 | 0.2838 | 0.4613 |
schreiber2017/mirex2017 | 0.0398 | 0.0002 | 0.0000 | 0.3685 | 0.0000 | 0.0000 | 0.8456 | 0.7106 | 1.0000 | 0.0472 | 0.0096 | 0.2009 | 0.3438 |
schreiber2018/cnn | 0.0014 | 0.0537 | 0.0048 | 0.3747 | 0.0000 | 0.0001 | 0.1341 | 0.0891 | 0.0472 | 1.0000 | 0.7883 | 0.5223 | 0.2255 |
schreiber2018/fcn | 0.0006 | 0.0670 | 0.0055 | 0.2543 | 0.0000 | 0.0002 | 0.0800 | 0.0289 | 0.0096 | 0.7883 | 1.0000 | 0.3700 | 0.0789 |
schreiber2018/ismir2018 | 0.0050 | 0.0246 | 0.0016 | 0.7125 | 0.0000 | 0.0001 | 0.2735 | 0.2838 | 0.2009 | 0.5223 | 0.3700 | 1.0000 | 0.6350 |
sun2021/default | 0.0045 | 0.0005 | 0.0000 | 0.9723 | 0.0000 | 0.0000 | 0.4313 | 0.4613 | 0.3438 | 0.2255 | 0.0789 | 0.6350 | 1.0000 |
Table 15: Paired t-test p-values, using reference annotations 2.0 as groundtruth with OE2. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.
OE1 on Tempo-Subsets
How well does an estimator perform, when only taking a subset of the reference annotations into account? The graphs show mean OE1 for reference subsets with tempi in [T-10,T+10] BPM. Note that the graphs do not show confidence intervals and that some values may be based on very few estimates.
OE1 on Tempo-Subsets for 1.0
Figure 45: Mean OE1 for estimates compared to version 1.0 for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
OE1 on Tempo-Subsets for 2.0
Figure 46: Mean OE1 for estimates compared to version 2.0 for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
OE2 on Tempo-Subsets
How well does an estimator perform, when only taking a subset of the reference annotations into account? The graphs show mean OE2 for reference subsets with tempi in [T-10,T+10] BPM. Note that the graphs do not show confidence intervals and that some values may be based on very few estimates.
OE2 on Tempo-Subsets for 1.0
Figure 47: Mean OE2 for estimates compared to version 1.0 for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
OE2 on Tempo-Subsets for 2.0
Figure 48: Mean OE2 for estimates compared to version 2.0 for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated OE1 for Tempo
When fitting a generalized additive model (GAM) to OE1-values and a ground truth, what OE1 can we expect with confidence?
Estimated OE1 for Tempo for 1.0
Predictions of GAMs trained on OE1 for estimates for reference 1.0.
Figure 49: OE1 predictions of a generalized additive model (GAM) fit to OE1 results for 1.0. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated OE1 for Tempo for 2.0
Predictions of GAMs trained on OE1 for estimates for reference 2.0.
Figure 50: OE1 predictions of a generalized additive model (GAM) fit to OE1 results for 2.0. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated OE2 for Tempo
When fitting a generalized additive model (GAM) to OE2-values and a ground truth, what OE2 can we expect with confidence?
Estimated OE2 for Tempo for 1.0
Predictions of GAMs trained on OE2 for estimates for reference 1.0.
Figure 51: OE2 predictions of a generalized additive model (GAM) fit to OE2 results for 1.0. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated OE2 for Tempo for 2.0
Predictions of GAMs trained on OE2 for estimates for reference 2.0.
Figure 52: OE2 predictions of a generalized additive model (GAM) fit to OE2 results for 2.0. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
OE1 for ‘tag_open’ Tags
How well does an estimator perform, when only taking tracks into account that are tagged with some kind of label? Note that some values may be based on very few estimates.
OE1 for ‘tag_open’ Tags for 1.0
Figure 53: OE1 of estimates compared to version 1.0 depending on tag from namespace ‘tag_open’.
OE1 for ‘tag_open’ Tags for 2.0
Figure 54: OE1 of estimates compared to version 2.0 depending on tag from namespace ‘tag_open’.
OE2 for ‘tag_open’ Tags
How well does an estimator perform, when only taking tracks into account that are tagged with some kind of label? Note that some values may be based on very few estimates.
OE2 for ‘tag_open’ Tags for 1.0
Figure 55: OE2 of estimates compared to version 1.0 depending on tag from namespace ‘tag_open’.
OE2 for ‘tag_open’ Tags for 2.0
Figure 56: OE2 of estimates compared to version 2.0 depending on tag from namespace ‘tag_open’.
AOE1 and AOE2
AOE1 is defined as absolute octave error between an estimate and a reference value: AOE1(E) = |log2(E/R)|
.
AOE2 is the minimum of AOE1 allowing the octave errors 2, 3, 1/2, and 1/3: AOE2(E) = min(AOE1(E), AOE1(2E), AOE1(3E), AOE1(½E), AOE1(⅓E))
.
Mean AOE1/AOE2 Results for 1.0
Estimator | AOE1_MEAN | AOE1_STDEV | AOE2_MEAN | AOE2_STDEV |
---|---|---|---|---|
sun2021/default | 0.1493 | 0.3341 | 0.0286 | 0.0811 |
schreiber2018/fcn | 0.1504 | 0.3342 | 0.0275 | 0.0830 |
schreiber2017/mirex2017 | 0.1658 | 0.3462 | 0.0301 | 0.0891 |
boeck2020/dar | 0.1713 | 0.3521 | 0.0339 | 0.0870 |
schreiber2018/cnn | 0.1731 | 0.3508 | 0.0319 | 0.0930 |
schreiber2018/ismir2018 | 0.2032 | 0.3790 | 0.0295 | 0.0870 |
boeck2019/multi_task_hjdb | 0.2519 | 0.4117 | 0.0340 | 0.0917 |
boeck2019/multi_task | 0.2969 | 0.4342 | 0.0352 | 0.0930 |
schreiber2017/ismir2017 | 0.3078 | 0.4392 | 0.0318 | 0.0919 |
schreiber2014/default | 0.3589 | 0.4546 | 0.0386 | 0.1019 |
boeck2015/tempodetector2016_default | 0.4129 | 0.5606 | 0.0470 | 0.1108 |
percival2014/stem | 0.4278 | 0.4765 | 0.0342 | 0.0952 |
davies2009/mirex_qm_tempotracker | 0.4662 | 0.3484 | 0.2141 | 0.1946 |
Table 16: Mean AOE1/AOE2 for estimates compared to version 1.0 ordered by mean.
Raw data AOE1: CSV JSON LATEX PICKLE
Raw data AOE2: CSV JSON LATEX PICKLE
AOE1 distribution for 1.0
Figure 57: AOE1 for estimates compared to version 1.0. Shown are the mean AOE1 and an empirical distribution of the sample, using kernel density estimation (KDE).
CSV JSON LATEX PICKLE SVG PDF PNG
AOE2 distribution for 1.0
Figure 58: AOE2 for estimates compared to version 1.0. Shown are the mean AOE2 and an empirical distribution of the sample, using kernel density estimation (KDE).
CSV JSON LATEX PICKLE SVG PDF PNG
Mean AOE1/AOE2 Results for 2.0
Estimator | AOE1_MEAN | AOE1_STDEV | AOE2_MEAN | AOE2_STDEV |
---|---|---|---|---|
schreiber2018/fcn | 0.0968 | 0.2771 | 0.0135 | 0.0446 |
sun2021/default | 0.1127 | 0.3069 | 0.0134 | 0.0401 |
boeck2020/dar | 0.1179 | 0.3046 | 0.0189 | 0.0556 |
schreiber2018/cnn | 0.1299 | 0.3182 | 0.0159 | 0.0545 |
schreiber2017/mirex2017 | 0.1574 | 0.3454 | 0.0191 | 0.0621 |
schreiber2018/ismir2018 | 0.1683 | 0.3592 | 0.0154 | 0.0519 |
boeck2019/multi_task_hjdb | 0.2183 | 0.3961 | 0.0205 | 0.0631 |
boeck2019/multi_task | 0.2873 | 0.4378 | 0.0213 | 0.0650 |
schreiber2017/ismir2017 | 0.2911 | 0.4393 | 0.0207 | 0.0661 |
schreiber2014/default | 0.3662 | 0.4636 | 0.0287 | 0.0827 |
boeck2015/tempodetector2016_default | 0.3974 | 0.5599 | 0.0302 | 0.0877 |
percival2014/stem | 0.4156 | 0.4787 | 0.0217 | 0.0701 |
davies2009/mirex_qm_tempotracker | 0.4325 | 0.3552 | 0.2026 | 0.1998 |
Table 17: Mean AOE1/AOE2 for estimates compared to version 2.0 ordered by mean.
Raw data AOE1: CSV JSON LATEX PICKLE
Raw data AOE2: CSV JSON LATEX PICKLE
AOE1 distribution for 2.0
Figure 59: AOE1 for estimates compared to version 2.0. Shown are the mean AOE1 and an empirical distribution of the sample, using kernel density estimation (KDE).
CSV JSON LATEX PICKLE SVG PDF PNG
AOE2 distribution for 2.0
Figure 60: AOE2 for estimates compared to version 2.0. Shown are the mean AOE2 and an empirical distribution of the sample, using kernel density estimation (KDE).
CSV JSON LATEX PICKLE SVG PDF PNG
Significance of Differences
Estimator | boeck2015/tempodetector2016_default | boeck2019/multi_task | boeck2019/multi_task_hjdb | boeck2020/dar | davies2009/mirex_qm_tempotracker | percival2014/stem | schreiber2014/default | schreiber2017/ismir2017 | schreiber2017/mirex2017 | schreiber2018/cnn | schreiber2018/fcn | schreiber2018/ismir2018 | sun2021/default |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
boeck2015/tempodetector2016_default | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0174 | 0.5153 | 0.0272 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
boeck2019/multi_task | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.4269 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
boeck2019/multi_task_hjdb | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0002 | 0.0000 | 0.0000 | 0.0000 | 0.0010 | 0.0000 |
boeck2020/dar | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.7152 | 0.8927 | 0.1170 | 0.0303 | 0.0839 |
davies2009/mirex_qm_tempotracker | 0.0174 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0350 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
percival2014/stem | 0.5153 | 0.0000 | 0.0000 | 0.0000 | 0.0350 | 1.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2014/default | 0.0272 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 1.0000 | 0.0021 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2017/ismir2017 | 0.0000 | 0.4269 | 0.0002 | 0.0000 | 0.0000 | 0.0000 | 0.0021 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2017/mirex2017 | 0.0000 | 0.0000 | 0.0000 | 0.7152 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.6264 | 0.2746 | 0.0083 | 0.2850 |
schreiber2018/cnn | 0.0000 | 0.0000 | 0.0000 | 0.8927 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.6264 | 1.0000 | 0.0509 | 0.0291 | 0.0828 |
schreiber2018/fcn | 0.0000 | 0.0000 | 0.0000 | 0.1170 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2746 | 0.0509 | 1.0000 | 0.0001 | 0.9255 |
schreiber2018/ismir2018 | 0.0000 | 0.0000 | 0.0010 | 0.0303 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0083 | 0.0291 | 0.0001 | 1.0000 | 0.0004 |
sun2021/default | 0.0000 | 0.0000 | 0.0000 | 0.0839 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2850 | 0.0828 | 0.9255 | 0.0004 | 1.0000 |
Table 18: Paired t-test p-values, using reference annotations 1.0 as groundtruth with AOE1. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.
Estimator | boeck2015/tempodetector2016_default | boeck2019/multi_task | boeck2019/multi_task_hjdb | boeck2020/dar | davies2009/mirex_qm_tempotracker | percival2014/stem | schreiber2014/default | schreiber2017/ismir2017 | schreiber2017/mirex2017 | schreiber2018/cnn | schreiber2018/fcn | schreiber2018/ismir2018 | sun2021/default |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
boeck2015/tempodetector2016_default | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1200 | 0.4302 | 0.2061 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
boeck2019/multi_task | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.7826 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
boeck2019/multi_task_hjdb | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0009 | 0.0000 |
boeck2020/dar | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0077 | 0.3601 | 0.1070 | 0.0005 | 0.6831 |
davies2009/mirex_qm_tempotracker | 0.1200 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.3503 | 0.0002 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
percival2014/stem | 0.4302 | 0.0000 | 0.0000 | 0.0000 | 0.3503 | 1.0000 | 0.0036 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2014/default | 0.2061 | 0.0000 | 0.0000 | 0.0000 | 0.0002 | 0.0036 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2017/ismir2017 | 0.0000 | 0.7826 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2017/mirex2017 | 0.0000 | 0.0000 | 0.0001 | 0.0077 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0629 | 0.0000 | 0.4387 | 0.0039 |
schreiber2018/cnn | 0.0000 | 0.0000 | 0.0000 | 0.3601 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0629 | 1.0000 | 0.0036 | 0.0056 | 0.2156 |
schreiber2018/fcn | 0.0000 | 0.0000 | 0.0000 | 0.1070 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0036 | 1.0000 | 0.0000 | 0.1835 |
schreiber2018/ismir2018 | 0.0000 | 0.0000 | 0.0009 | 0.0005 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.4387 | 0.0056 | 0.0000 | 1.0000 | 0.0003 |
sun2021/default | 0.0000 | 0.0000 | 0.0000 | 0.6831 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0039 | 0.2156 | 0.1835 | 0.0003 | 1.0000 |
Table 19: Paired t-test p-values, using reference annotations 2.0 as groundtruth with AOE1. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.
Estimator | boeck2015/tempodetector2016_default | boeck2019/multi_task | boeck2019/multi_task_hjdb | boeck2020/dar | davies2009/mirex_qm_tempotracker | percival2014/stem | schreiber2014/default | schreiber2017/ismir2017 | schreiber2017/mirex2017 | schreiber2018/cnn | schreiber2018/fcn | schreiber2018/ismir2018 | sun2021/default |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
boeck2015/tempodetector2016_default | 1.0000 | 0.0009 | 0.0002 | 0.0001 | 0.0000 | 0.0020 | 0.0475 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 |
boeck2019/multi_task | 0.0009 | 1.0000 | 0.3909 | 0.4447 | 0.0000 | 0.7405 | 0.3388 | 0.1667 | 0.0436 | 0.1945 | 0.0020 | 0.0228 | 0.0027 |
boeck2019/multi_task_hjdb | 0.0002 | 0.3909 | 1.0000 | 0.9727 | 0.0000 | 0.9300 | 0.1819 | 0.3765 | 0.1252 | 0.4066 | 0.0078 | 0.0610 | 0.0118 |
boeck2020/dar | 0.0001 | 0.4447 | 0.9727 | 1.0000 | 0.0000 | 0.9172 | 0.1555 | 0.3075 | 0.0733 | 0.4135 | 0.0047 | 0.0366 | 0.0127 |
davies2009/mirex_qm_tempotracker | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
percival2014/stem | 0.0020 | 0.7405 | 0.9300 | 0.9172 | 0.0000 | 1.0000 | 0.2598 | 0.4521 | 0.2173 | 0.4194 | 0.0184 | 0.1419 | 0.0561 |
schreiber2014/default | 0.0475 | 0.3388 | 0.1819 | 0.1555 | 0.0000 | 0.2598 | 1.0000 | 0.0154 | 0.0028 | 0.0411 | 0.0004 | 0.0058 | 0.0020 |
schreiber2017/ismir2017 | 0.0000 | 0.1667 | 0.3765 | 0.3075 | 0.0000 | 0.4521 | 0.0154 | 1.0000 | 0.0698 | 0.9566 | 0.0428 | 0.2946 | 0.1710 |
schreiber2017/mirex2017 | 0.0000 | 0.0436 | 0.1252 | 0.0733 | 0.0000 | 0.2173 | 0.0028 | 0.0698 | 1.0000 | 0.4230 | 0.1700 | 0.7367 | 0.4765 |
schreiber2018/cnn | 0.0001 | 0.1945 | 0.4066 | 0.4135 | 0.0000 | 0.4194 | 0.0411 | 0.9566 | 0.4230 | 1.0000 | 0.0287 | 0.2110 | 0.1018 |
schreiber2018/fcn | 0.0000 | 0.0020 | 0.0078 | 0.0047 | 0.0000 | 0.0184 | 0.0004 | 0.0428 | 0.1700 | 0.0287 | 1.0000 | 0.3123 | 0.5603 |
schreiber2018/ismir2018 | 0.0000 | 0.0228 | 0.0610 | 0.0366 | 0.0000 | 0.1419 | 0.0058 | 0.2946 | 0.7367 | 0.2110 | 0.3123 | 1.0000 | 0.6381 |
sun2021/default | 0.0000 | 0.0027 | 0.0118 | 0.0127 | 0.0000 | 0.0561 | 0.0020 | 0.1710 | 0.4765 | 0.1018 | 0.5603 | 0.6381 | 1.0000 |
Table 20: Paired t-test p-values, using reference annotations 1.0 as groundtruth with AOE2. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.
Estimator | boeck2015/tempodetector2016_default | boeck2019/multi_task | boeck2019/multi_task_hjdb | boeck2020/dar | davies2009/mirex_qm_tempotracker | percival2014/stem | schreiber2014/default | schreiber2017/ismir2017 | schreiber2017/mirex2017 | schreiber2018/cnn | schreiber2018/fcn | schreiber2018/ismir2018 | sun2021/default |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
boeck2015/tempodetector2016_default | 1.0000 | 0.0102 | 0.0043 | 0.0005 | 0.0000 | 0.0360 | 0.7097 | 0.0076 | 0.0020 | 0.0001 | 0.0000 | 0.0000 | 0.0000 |
boeck2019/multi_task | 0.0102 | 1.0000 | 0.5613 | 0.1758 | 0.0000 | 0.8910 | 0.0400 | 0.7932 | 0.3719 | 0.0324 | 0.0013 | 0.0151 | 0.0001 |
boeck2019/multi_task_hjdb | 0.0043 | 0.5613 | 1.0000 | 0.3719 | 0.0000 | 0.6753 | 0.0197 | 0.9376 | 0.5745 | 0.0617 | 0.0028 | 0.0254 | 0.0003 |
boeck2020/dar | 0.0005 | 0.1758 | 0.3719 | 1.0000 | 0.0000 | 0.3648 | 0.0041 | 0.4428 | 0.9518 | 0.2092 | 0.0177 | 0.1006 | 0.0074 |
davies2009/mirex_qm_tempotracker | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
percival2014/stem | 0.0360 | 0.8910 | 0.6753 | 0.3648 | 0.0000 | 1.0000 | 0.0771 | 0.7435 | 0.4184 | 0.0416 | 0.0028 | 0.0431 | 0.0013 |
schreiber2014/default | 0.7097 | 0.0400 | 0.0197 | 0.0041 | 0.0000 | 0.0771 | 1.0000 | 0.0048 | 0.0007 | 0.0001 | 0.0000 | 0.0001 | 0.0000 |
schreiber2017/ismir2017 | 0.0076 | 0.7932 | 0.9376 | 0.4428 | 0.0000 | 0.7435 | 0.0048 | 1.0000 | 0.0857 | 0.0478 | 0.0008 | 0.0245 | 0.0026 |
schreiber2017/mirex2017 | 0.0020 | 0.3719 | 0.5745 | 0.9518 | 0.0000 | 0.4184 | 0.0007 | 0.0857 | 1.0000 | 0.1542 | 0.0041 | 0.0881 | 0.0112 |
schreiber2018/cnn | 0.0001 | 0.0324 | 0.0617 | 0.2092 | 0.0000 | 0.0416 | 0.0001 | 0.0478 | 0.1542 | 1.0000 | 0.1911 | 0.7931 | 0.1992 |
schreiber2018/fcn | 0.0000 | 0.0013 | 0.0028 | 0.0177 | 0.0000 | 0.0028 | 0.0000 | 0.0008 | 0.0041 | 0.1911 | 1.0000 | 0.3085 | 0.9701 |
schreiber2018/ismir2018 | 0.0000 | 0.0151 | 0.0254 | 0.1006 | 0.0000 | 0.0431 | 0.0001 | 0.0245 | 0.0881 | 0.7931 | 0.3085 | 1.0000 | 0.2806 |
sun2021/default | 0.0000 | 0.0001 | 0.0003 | 0.0074 | 0.0000 | 0.0013 | 0.0000 | 0.0026 | 0.0112 | 0.1992 | 0.9701 | 0.2806 | 1.0000 |
Table 21: Paired t-test p-values, using reference annotations 2.0 as groundtruth with AOE2. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.
AOE1 on Tempo-Subsets
How well does an estimator perform, when only taking a subset of the reference annotations into account? The graphs show mean AOE1 for reference subsets with tempi in [T-10,T+10] BPM. Note that the graphs do not show confidence intervals and that some values may be based on very few estimates.
AOE1 on Tempo-Subsets for 1.0
Figure 61: Mean AOE1 for estimates compared to version 1.0 for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
AOE1 on Tempo-Subsets for 2.0
Figure 62: Mean AOE1 for estimates compared to version 2.0 for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
AOE2 on Tempo-Subsets
How well does an estimator perform, when only taking a subset of the reference annotations into account? The graphs show mean AOE2 for reference subsets with tempi in [T-10,T+10] BPM. Note that the graphs do not show confidence intervals and that some values may be based on very few estimates.
AOE2 on Tempo-Subsets for 1.0
Figure 63: Mean AOE2 for estimates compared to version 1.0 for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
AOE2 on Tempo-Subsets for 2.0
Figure 64: Mean AOE2 for estimates compared to version 2.0 for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated AOE1 for Tempo
When fitting a generalized additive model (GAM) to AOE1-values and a ground truth, what AOE1 can we expect with confidence?
Estimated AOE1 for Tempo for 1.0
Predictions of GAMs trained on AOE1 for estimates for reference 1.0.
Figure 65: AOE1 predictions of a generalized additive model (GAM) fit to AOE1 results for 1.0. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated AOE1 for Tempo for 2.0
Predictions of GAMs trained on AOE1 for estimates for reference 2.0.
Figure 66: AOE1 predictions of a generalized additive model (GAM) fit to AOE1 results for 2.0. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated AOE2 for Tempo
When fitting a generalized additive model (GAM) to AOE2-values and a ground truth, what AOE2 can we expect with confidence?
Estimated AOE2 for Tempo for 1.0
Predictions of GAMs trained on AOE2 for estimates for reference 1.0.
Figure 67: AOE2 predictions of a generalized additive model (GAM) fit to AOE2 results for 1.0. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated AOE2 for Tempo for 2.0
Predictions of GAMs trained on AOE2 for estimates for reference 2.0.
Figure 68: AOE2 predictions of a generalized additive model (GAM) fit to AOE2 results for 2.0. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
AOE1 for ‘tag_open’ Tags
How well does an estimator perform, when only taking tracks into account that are tagged with some kind of label? Note that some values may be based on very few estimates.
AOE1 for ‘tag_open’ Tags for 1.0
Figure 69: AOE1 of estimates compared to version 1.0 depending on tag from namespace ‘tag_open’.
AOE1 for ‘tag_open’ Tags for 2.0
Figure 70: AOE1 of estimates compared to version 2.0 depending on tag from namespace ‘tag_open’.
AOE2 for ‘tag_open’ Tags
How well does an estimator perform, when only taking tracks into account that are tagged with some kind of label? Note that some values may be based on very few estimates.
AOE2 for ‘tag_open’ Tags for 1.0
Figure 71: AOE2 of estimates compared to version 1.0 depending on tag from namespace ‘tag_open’.
AOE2 for ‘tag_open’ Tags for 2.0
Figure 72: AOE2 of estimates compared to version 2.0 depending on tag from namespace ‘tag_open’.
Generated by tempo_eval 0.1.1 on 2022-06-29 18:32. Size L.