gtzan
This is the tempo_eval report for the ‘gtzan’ corpus.
Reports for other corpora may be found here.
Table of Contents
- References for ‘gtzan’
- Estimates for ‘gtzan’
- Estimators
- boeck2015/tempodetector2016_default
- boeck2019/multi_task
- boeck2019/multi_task_hjdb
- boeck2020/dar
- davies2009/mirex_qm_tempotracker
- echonest/version_3_2_1
- gkiokas2012/default
- klapuri2006/percival2014
- oliveira2010/ibt
- percival2014/stem
- scheirer1998/percival2014
- schreiber2014/default
- schreiber2017/ismir2017
- schreiber2017/mirex2017
- schreiber2018/cnn
- schreiber2018/fcn
- schreiber2018/ismir2018
- sun2021/default
- zplane/auftakt_v3
- Basic Statistics
- Smoothed Tempo Distribution
- Accuracy
- Accuracy Results for 1.0
- Accuracy1 for 1.0
- Accuracy2 for 1.0
- Accuracy Results for 2.0
- Accuracy1 for 2.0
- Accuracy2 for 2.0
- Accuracy Results for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI
- Accuracy1 for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI
- Accuracy2 for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI
- Accuracy Results for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI
- Accuracy1 for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI
- Accuracy2 for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI
- Differing Items
- Significance of Differences
- Accuracy1 on cvar-Subsets
- Accuracy2 on cvar-Subsets
- Accuracy1 on Tempo-Subsets
- Accuracy2 on Tempo-Subsets
- Estimated Accuracy1 for Tempo
- Estimated Accuracy2 for Tempo
- Accuracy1 for ‘tag_open’ Tags
- Accuracy1 for ‘tag_gtzan’ Tags
- Accuracy2 for ‘tag_open’ Tags
- Accuracy2 for ‘tag_gtzan’ Tags
- OE1 and OE2
- Mean OE1/OE2 Results for 1.0
- OE1 distribution for 1.0
- OE2 distribution for 1.0
- Mean OE1/OE2 Results for 2.0
- OE1 distribution for 2.0
- OE2 distribution for 2.0
- Mean OE1/OE2 Results for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI
- OE1 distribution for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI
- OE2 distribution for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI
- Mean OE1/OE2 Results for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI
- OE1 distribution for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI
- OE2 distribution for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI
- Significance of Differences
- OE1 on cvar-Subsets
- OE2 on cvar-Subsets
- OE1 on Tempo-Subsets
- OE2 on Tempo-Subsets
- Estimated OE1 for Tempo
- Estimated OE2 for Tempo
- OE1 for ‘tag_open’ Tags
- OE1 for ‘tag_gtzan’ Tags
- OE2 for ‘tag_open’ Tags
- OE2 for ‘tag_gtzan’ Tags
- AOE1 and AOE2
- Mean AOE1/AOE2 Results for 1.0
- AOE1 distribution for 1.0
- AOE2 distribution for 1.0
- Mean AOE1/AOE2 Results for 2.0
- AOE1 distribution for 2.0
- AOE2 distribution for 2.0
- Mean AOE1/AOE2 Results for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI
- AOE1 distribution for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI
- AOE2 distribution for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI
- Mean AOE1/AOE2 Results for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI
- AOE1 distribution for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI
- AOE2 distribution for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI
- Significance of Differences
- AOE1 on cvar-Subsets
- AOE2 on cvar-Subsets
- AOE1 on Tempo-Subsets
- AOE2 on Tempo-Subsets
- Estimated AOE1 for Tempo
- Estimated AOE2 for Tempo
- AOE1 for ‘tag_open’ Tags
- AOE1 for ‘tag_gtzan’ Tags
- AOE2 for ‘tag_open’ Tags
- AOE2 for ‘tag_gtzan’ Tags
- Estimators
References for ‘gtzan’
References
1.0
Attribute | Value |
---|---|
Corpus | GTZAN |
Version | 1.0 |
Curator | George Tzanetakis |
Annotator, bibtex | Tzanetakis2013 |
Annotator, ref_url | http://www.marsyas.info/tempo/ |
2.0
Attribute | Value |
---|---|
Corpus | GTZAN |
Version | 2.0 |
Curator | Graham Percival |
Annotator, bibtex | Percival2014 |
Annotator, ref_url | http://www.marsyas.info/tempo/ |
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI
Attribute | Value |
---|---|
Corpus | GTZAN |
Version | GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI |
Curator | Ugo Marchand & Quentin Fresnel |
Data Source | manual annotation |
Annotation Tools | derived from beat annotations |
Annotation Rules | median of inter beat intervals (IBI) |
Annotator, bibtex | Marchand2015 |
Annotator, ref_url | https://hal.archives-ouvertes.fr/hal-01252603/document |
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI
Attribute | Value |
---|---|
Corpus | GTZAN |
Version | GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI |
Curator | Ugo Marchand & Quentin Fresnel |
Data Source | manual annotation |
Annotation Tools | derived from beat annotations |
Annotation Rules | median of inter corresponding beat intervals (ICBI) |
Annotator, bibtex | Marchand2015 |
Annotator, ref_url | https://hal.archives-ouvertes.fr/hal-01252603/document |
Basic Statistics
Reference | Size | Min | Max | Avg | Stdev | Sweet Oct. Start | Sweet Oct. Coverage |
---|---|---|---|---|---|---|---|
1.0 | 1000 | 38.00 | 168.00 | 94.27 | 24.45 | 66.00 | 0.81 |
2.0 | 999 | 38.00 | 168.00 | 94.92 | 24.41 | 66.00 | 0.81 |
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI | 1000 | 37.73 | 338.88 | 119.57 | 40.16 | 80.00 | 0.74 |
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI | 1000 | 37.68 | 339.29 | 119.53 | 40.13 | 79.00 | 0.74 |
Smoothed Tempo Distribution
Figure 1: Percentage of values in tempo interval.
CSV JSON LATEX PICKLE SVG PDF PNG
Tag Distribution for ‘tag_gtzan’
Figure 2: Percentage of tracks tagged with tags from namespace ‘tag_gtzan’. Annotations are from reference 1.0.
CSV JSON LATEX PICKLE SVG PDF PNG
Tag Distribution for ‘tag_open’
Figure 3: Percentage of tracks tagged with tags from namespace ‘tag_open’. Annotations are from reference GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28.
CSV JSON LATEX PICKLE SVG PDF PNG
Beat-Based Tempo Variation
Figure 4: Fraction of the dataset with beat-annotated tracks with cvar < τ.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimates for ‘gtzan’
Estimators
boeck2015/tempodetector2016_default
Attribute | Value |
---|---|
Corpus | gtzan |
Version | 0.17.dev0 |
Annotation Tools | TempoDetector.2016, madmom, https://github.com/CPJKU/madmom |
Annotator, bibtex | Boeck2015 |
boeck2019/multi_task
Attribute | Value |
---|---|
Corpus | gtzan |
Version | 0.0.1 |
Annotation Tools | model=multi_task, https://github.com/superbock/ISMIR2019 |
Annotator, bibtex | Boeck2019 |
boeck2019/multi_task_hjdb
Attribute | Value |
---|---|
Corpus | gtzan |
Version | 0.0.1 |
Annotation Tools | model=multi_task_hjdb, https://github.com/superbock/ISMIR2019 |
Annotator, bibtex | Boeck2019 |
boeck2020/dar
Attribute | Value |
---|---|
Corpus | gtzan |
Version | 0.0.1 |
Annotation Tools | https://github.com/superbock/ISMIR2020 |
Annotator, bibtex | Boeck2020 |
davies2009/mirex_qm_tempotracker
Attribute | Value | |
---|---|---|
Corpus | gtzan | |
Version | 1.0 | |
Annotation Tools | QM Tempotracker, Sonic Annotator plugin. https://code.soundsoftware.ac.uk/projects/mirex2013/repository/show/audio_tempo_estimation/qm-tempotracker Note that the current macOS build of ‘qm-vamp-plugins’ was used. | |
Annotator, bibtex | Davies2009 | Davies2007 |
echonest/version_3_2_1
Attribute | Value |
---|---|
Corpus | gtzan |
Version | 3.2.1 |
Data Source | Graham Percival and George Tzanetakis. Streamlined tempo estimation based on autocorrelation and crosscorrelation with pulses. IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP), 22(12):1765–1776, 2014. |
Annotation Tools | Echo Nest track analyzer v3.2.1 |
Annotator, bibtex | Percival2014 |
gkiokas2012/default
Attribute | Value |
---|---|
Corpus | gtzan |
Version | 1.0 |
Data Source | Graham Percival and George Tzanetakis. Streamlined tempo estimation based on autocorrelation and crosscorrelation with pulses. IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP), 22(12):1765–1776, 2014. |
Annotation Tools | Gkiokas2012 |
Annotator, bibtex | Gkiokas2012 |
klapuri2006/percival2014
Attribute | Value |
---|---|
Corpus | gtzan |
Version | 1.0 |
Data Source | Graham Percival and George Tzanetakis. Streamlined tempo estimation based on autocorrelation and crosscorrelation with pulses. IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP), 22(12):1765–1776, 2014. |
Annotation Tools | Klapuri 2006 |
Annotator, bibtex | Klapuri2006 |
oliveira2010/ibt
Attribute | Value |
---|---|
Corpus | gtzan |
Version | 1.0 |
Data Source | Graham Percival and George Tzanetakis. Streamlined tempo estimation based on autocorrelation and crosscorrelation with pulses. IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP), 22(12):1765–1776, 2014. |
Annotation Tools | Oliveira 2010 |
Annotator, bibtex | Oliveira2010 |
percival2014/stem
Attribute | Value |
---|---|
Corpus | gtzan |
Version | 1.0 |
Annotation Tools | percival 2014, ‘tempo’ implementation from Marsyas, http://marsyas.info, git checkout tempo-stem |
Annotator, bibtex | Percival2014 |
scheirer1998/percival2014
Attribute | Value |
---|---|
Corpus | gtzan |
Version | 1.0 |
Data Source | Graham Percival and George Tzanetakis. Streamlined tempo estimation based on autocorrelation and crosscorrelation with pulses. IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP), 22(12):1765–1776, 2014. |
Annotation Tools | Scheirer 1998 |
Annotator, bibtex | Scheirer1998 |
schreiber2014/default
Attribute | Value |
---|---|
Corpus | gtzan |
Version | 0.0.1 |
Annotation Tools | schreiber 2014, http://www.tagtraum.com/tempo_estimation.html |
Annotator, bibtex | Schreiber2014 |
schreiber2017/ismir2017
Attribute | Value |
---|---|
Corpus | gtzan |
Version | 0.0.4 |
Annotation Tools | schreiber 2017, model=ismir2017, http://www.tagtraum.com/tempo_estimation.html |
Annotator, bibtex | Schreiber2017 |
schreiber2017/mirex2017
Attribute | Value |
---|---|
Corpus | gtzan |
Version | 0.0.4 |
Annotation Tools | schreiber 2017, model=mirex2017, http://www.tagtraum.com/tempo_estimation.html |
Annotator, bibtex | Schreiber2017 |
schreiber2018/cnn
Attribute | Value |
---|---|
Corpus | gtzan |
Version | 0.0.2 |
Data Source | Hendrik Schreiber, Meinard Müller. A Single-Step Approach to Musical Tempo Estimation Using a Convolutional Neural Network. In Proceedings of the 19th International Society for Music Information Retrieval Conference (ISMIR), Paris, France, Sept. 2018. |
Annotation Tools | schreiber tempo-cnn (model=cnn), https://github.com/hendriks73/tempo-cnn |
schreiber2018/fcn
Attribute | Value |
---|---|
Corpus | gtzan |
Version | 0.0.2 |
Data Source | Hendrik Schreiber, Meinard Müller. A Single-Step Approach to Musical Tempo Estimation Using a Convolutional Neural Network. In Proceedings of the 19th International Society for Music Information Retrieval Conference (ISMIR), Paris, France, Sept. 2018. |
Annotation Tools | schreiber tempo-cnn (model=fcn), https://github.com/hendriks73/tempo-cnn |
schreiber2018/ismir2018
Attribute | Value |
---|---|
Corpus | gtzan |
Version | 0.0.2 |
Data Source | Hendrik Schreiber, Meinard Müller. A Single-Step Approach to Musical Tempo Estimation Using a Convolutional Neural Network. In Proceedings of the 19th International Society for Music Information Retrieval Conference (ISMIR), Paris, France, Sept. 2018. |
Annotation Tools | schreiber tempo-cnn (model=ismir2018), https://github.com/hendriks73/tempo-cnn |
sun2021/default
Attribute | Value |
---|---|
Corpus | gtzan |
Version | 0.0.2 |
Data Source | Xiaoheng Sun, Qiqi He, Yongwei Gao, Wei Li. Musical Tempo Estimation Using a Multi-scale Network. in Proc. of the 22nd Int. Society for Music Information Retrieval Conf., Online, 2021 |
Annotation Tools | https://github.com/Qqi-HE/TempoEstimation_MGANet |
Annotator, bibtex | Sun2021 |
zplane/auftakt_v3
Attribute | Value |
---|---|
Corpus | gtzan |
Version | 3.0 |
Data Source | Graham Percival and George Tzanetakis. Streamlined tempo estimation based on autocorrelation and crosscorrelation with pulses. IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP), 22(12):1765–1776, 2014. |
Annotation Tools | zplane aufTAKT version 3.0, http://licensing.zplane.de/technology#auftakt |
Annotator, bibtex | Percival2014 |
Basic Statistics
Estimator | Size | Min | Max | Avg | Stdev | Sweet Oct. Start | Sweet Oct. Coverage |
---|---|---|---|---|---|---|---|
boeck2015/tempodetector2016_default | 1000 | 41.10 | 240.00 | 114.70 | 33.90 | 72.00 | 0.79 |
boeck2019/multi_task | 999 | 35.12 | 205.35 | 99.69 | 27.40 | 67.00 | 0.81 |
boeck2019/multi_task_hjdb | 999 | 35.24 | 205.22 | 98.14 | 27.45 | 67.00 | 0.80 |
boeck2020/dar | 999 | 44.78 | 243.25 | 116.02 | 35.42 | 79.00 | 0.75 |
davies2009/mirex_qm_tempotracker | 1000 | 63.02 | 258.40 | 122.69 | 27.27 | 84.00 | 0.90 |
echonest/version_3_2_1 | 999 | 50.00 | 199.68 | 104.28 | 27.52 | 67.00 | 0.80 |
gkiokas2012/default | 1000 | 31.00 | 246.00 | 107.52 | 30.05 | 71.00 | 0.80 |
klapuri2006/percival2014 | 1000 | 62.64 | 161.50 | 110.85 | 20.30 | 76.00 | 0.95 |
oliveira2010/ibt | 1000 | 80.00 | 161.00 | 116.43 | 20.75 | 81.00 | 1.00 |
percival2014/stem | 1000 | 50.42 | 154.27 | 102.55 | 21.52 | 71.00 | 0.92 |
scheirer1998/percival2014 | 979 | 61.35 | 179.81 | 103.73 | 27.80 | 64.00 | 0.80 |
schreiber2014/default | 1000 | 52.05 | 163.94 | 101.61 | 21.62 | 71.00 | 0.91 |
schreiber2017/ismir2017 | 1000 | 40.53 | 202.66 | 102.97 | 22.44 | 70.00 | 0.90 |
schreiber2017/mirex2017 | 1000 | 20.27 | 202.35 | 98.19 | 25.01 | 70.00 | 0.83 |
schreiber2018/cnn | 1000 | 50.00 | 237.00 | 112.00 | 31.25 | 75.00 | 0.81 |
schreiber2018/fcn | 1000 | 38.00 | 222.00 | 109.14 | 30.57 | 71.00 | 0.81 |
schreiber2018/ismir2018 | 1000 | 53.00 | 232.00 | 112.89 | 28.19 | 77.00 | 0.87 |
sun2021/default | 999 | 41.00 | 240.00 | 114.60 | 33.27 | 79.00 | 0.79 |
zplane/auftakt_v3 | 1000 | 65.00 | 165.40 | 109.51 | 22.56 | 73.00 | 0.89 |
Smoothed Tempo Distribution
Figure 5: Percentage of values in tempo interval.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy
Accuracy1 is defined as the percentage of correct estimates, allowing a 4% tolerance for individual BPM values.
Accuracy2 additionally permits estimates to be wrong by a factor of 2, 3, 1/2 or 1/3 (so-called octave errors).
See [Gouyon2006].
Note: When comparing accuracy values for different algorithms, keep in mind that an algorithm may have been trained on the test set or that the test set may have even been created using one of the tested algorithms.
Accuracy Results for 1.0
Estimator | Accuracy1 | Accuracy2 |
---|---|---|
schreiber2017/mirex2017 | 0.8800 | 0.9440 |
boeck2019/multi_task_hjdb | 0.7700 | 0.9360 |
percival2014/stem | 0.7690 | 0.9280 |
schreiber2017/ismir2017 | 0.7660 | 0.9240 |
boeck2019/multi_task | 0.7610 | 0.9340 |
schreiber2014/default | 0.7600 | 0.9170 |
schreiber2018/fcn | 0.7160 | 0.9270 |
gkiokas2012/default | 0.7060 | 0.9200 |
schreiber2018/cnn | 0.7020 | 0.9360 |
boeck2015/tempodetector2016_default | 0.6930 | 0.9420 |
klapuri2006/percival2014 | 0.6900 | 0.9100 |
zplane/auftakt_v3 | 0.6790 | 0.8780 |
schreiber2018/ismir2018 | 0.6740 | 0.9200 |
echonest/version_3_2_1 | 0.6700 | 0.8570 |
boeck2020/dar | 0.6680 | 0.9520 |
sun2021/default | 0.6500 | 0.9130 |
oliveira2010/ibt | 0.6010 | 0.8610 |
davies2009/mirex_qm_tempotracker | 0.5870 | 0.8860 |
scheirer1998/percival2014 | 0.5580 | 0.7570 |
Table 3: Mean accuracy of estimates compared to version 1.0 with 4% tolerance ordered by Accuracy1.
Raw data Accuracy1: CSV JSON LATEX PICKLE
Raw data Accuracy2: CSV JSON LATEX PICKLE
Accuracy1 for 1.0
Figure 6: Mean Accuracy1 for estimates compared to version 1.0 depending on tolerance.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy2 for 1.0
Figure 7: Mean Accuracy2 for estimates compared to version 1.0 depending on tolerance.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy Results for 2.0
Estimator | Accuracy1 | Accuracy2 |
---|---|---|
schreiber2017/mirex2017 | 0.8899 | 0.9600 |
percival2014/stem | 0.7808 | 0.9419 |
schreiber2017/ismir2017 | 0.7808 | 0.9389 |
schreiber2014/default | 0.7738 | 0.9339 |
boeck2019/multi_task_hjdb | 0.7738 | 0.9499 |
boeck2019/multi_task | 0.7688 | 0.9469 |
schreiber2018/fcn | 0.7267 | 0.9379 |
schreiber2018/cnn | 0.7167 | 0.9510 |
gkiokas2012/default | 0.7167 | 0.9379 |
boeck2015/tempodetector2016_default | 0.7067 | 0.9560 |
klapuri2006/percival2014 | 0.7037 | 0.9249 |
zplane/auftakt_v3 | 0.6887 | 0.8919 |
schreiber2018/ismir2018 | 0.6857 | 0.9329 |
echonest/version_3_2_1 | 0.6797 | 0.8699 |
boeck2020/dar | 0.6777 | 0.9660 |
sun2021/default | 0.6617 | 0.9249 |
oliveira2010/ibt | 0.6096 | 0.8699 |
davies2009/mirex_qm_tempotracker | 0.6006 | 0.9009 |
scheirer1998/percival2014 | 0.5666 | 0.7628 |
Table 4: Mean accuracy of estimates compared to version 2.0 with 4% tolerance ordered by Accuracy1.
Raw data Accuracy1: CSV JSON LATEX PICKLE
Raw data Accuracy2: CSV JSON LATEX PICKLE
Accuracy1 for 2.0
Figure 8: Mean Accuracy1 for estimates compared to version 2.0 depending on tolerance.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy2 for 2.0
Figure 9: Mean Accuracy2 for estimates compared to version 2.0 depending on tolerance.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy Results for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI
Estimator | Accuracy1 | Accuracy2 |
---|---|---|
boeck2020/dar | 0.8510 | 0.9620 |
sun2021/default | 0.8040 | 0.9310 |
boeck2015/tempodetector2016_default | 0.7810 | 0.9560 |
schreiber2018/ismir2018 | 0.7750 | 0.9350 |
schreiber2018/cnn | 0.7700 | 0.9500 |
schreiber2018/fcn | 0.7530 | 0.9520 |
davies2009/mirex_qm_tempotracker | 0.7100 | 0.9220 |
schreiber2017/ismir2017 | 0.7050 | 0.9360 |
boeck2019/multi_task | 0.7050 | 0.9530 |
klapuri2006/percival2014 | 0.7030 | 0.9280 |
oliveira2010/ibt | 0.6910 | 0.8790 |
schreiber2014/default | 0.6840 | 0.9360 |
percival2014/stem | 0.6830 | 0.9450 |
zplane/auftakt_v3 | 0.6810 | 0.8920 |
boeck2019/multi_task_hjdb | 0.6810 | 0.9520 |
schreiber2017/mirex2017 | 0.6770 | 0.9520 |
gkiokas2012/default | 0.6630 | 0.9360 |
echonest/version_3_2_1 | 0.6590 | 0.8760 |
scheirer1998/percival2014 | 0.5180 | 0.7700 |
Table 5: Mean accuracy of estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI with 4% tolerance ordered by Accuracy1.
Raw data Accuracy1: CSV JSON LATEX PICKLE
Raw data Accuracy2: CSV JSON LATEX PICKLE
Accuracy1 for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI
Figure 10: Mean Accuracy1 for estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI depending on tolerance.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy2 for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI
Figure 11: Mean Accuracy2 for estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI depending on tolerance.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy Results for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI
Estimator | Accuracy1 | Accuracy2 |
---|---|---|
boeck2020/dar | 0.8520 | 0.9630 |
sun2021/default | 0.8070 | 0.9350 |
boeck2015/tempodetector2016_default | 0.7810 | 0.9580 |
schreiber2018/ismir2018 | 0.7740 | 0.9340 |
schreiber2018/cnn | 0.7700 | 0.9490 |
schreiber2018/fcn | 0.7540 | 0.9540 |
davies2009/mirex_qm_tempotracker | 0.7080 | 0.9160 |
klapuri2006/percival2014 | 0.7050 | 0.9290 |
schreiber2017/ismir2017 | 0.7040 | 0.9350 |
boeck2019/multi_task | 0.7040 | 0.9520 |
oliveira2010/ibt | 0.6890 | 0.8750 |
schreiber2014/default | 0.6850 | 0.9370 |
percival2014/stem | 0.6820 | 0.9440 |
zplane/auftakt_v3 | 0.6800 | 0.8900 |
boeck2019/multi_task_hjdb | 0.6790 | 0.9500 |
schreiber2017/mirex2017 | 0.6780 | 0.9510 |
gkiokas2012/default | 0.6620 | 0.9340 |
echonest/version_3_2_1 | 0.6580 | 0.8730 |
scheirer1998/percival2014 | 0.5160 | 0.7690 |
Table 6: Mean accuracy of estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI with 4% tolerance ordered by Accuracy1.
Raw data Accuracy1: CSV JSON LATEX PICKLE
Raw data Accuracy2: CSV JSON LATEX PICKLE
Accuracy1 for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI
Figure 12: Mean Accuracy1 for estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI depending on tolerance.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy2 for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI
Figure 13: Mean Accuracy2 for estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI depending on tolerance.
CSV JSON LATEX PICKLE SVG PDF PNG
Differing Items
For which items did a given estimator not estimate a correct value with respect to a given ground truth? Are there items which are either very difficult, not suitable for the task, or incorrectly annotated and therefore never estimated correctly, regardless which estimator is used?
Differing Items Accuracy1
Items with different tempo annotations (Accuracy1, 4% tolerance) in different versions:
1.0 compared with boeck2015/tempodetector2016_default (307 differences): ‘blues.00008’ ‘blues.00011’ ‘blues.00016’ ‘blues.00023’ ‘blues.00025’ ‘blues.00031’ ‘blues.00032’ ‘blues.00033’ ‘blues.00035’ ‘blues.00036’ ‘blues.00037’ … CSV
1.0 compared with boeck2019/multi_task (239 differences): ‘blues.00008’ ‘blues.00017’ ‘blues.00023’ ‘blues.00029’ ‘blues.00030’ ‘blues.00031’ ‘blues.00033’ ‘blues.00037’ ‘blues.00038’ ‘blues.00042’ ‘blues.00047’ … CSV
1.0 compared with boeck2019/multi_task_hjdb (230 differences): ‘blues.00002’ ‘blues.00008’ ‘blues.00017’ ‘blues.00023’ ‘blues.00029’ ‘blues.00030’ ‘blues.00031’ ‘blues.00033’ ‘blues.00036’ ‘blues.00037’ ‘blues.00038’ … CSV
1.0 compared with boeck2020/dar (332 differences): ‘blues.00011’ ‘blues.00016’ ‘blues.00023’ ‘blues.00032’ ‘blues.00033’ ‘blues.00035’ ‘blues.00037’ ‘blues.00040’ ‘blues.00042’ ‘blues.00047’ ‘blues.00051’ … CSV
1.0 compared with davies2009/mirex_qm_tempotracker (413 differences): ‘blues.00006’ ‘blues.00007’ ‘blues.00008’ ‘blues.00009’ ‘blues.00011’ ‘blues.00023’ ‘blues.00025’ ‘blues.00029’ ‘blues.00030’ ‘blues.00032’ ‘blues.00034’ … CSV
1.0 compared with echonest/version_3_2_1 (330 differences): ‘blues.00002’ ‘blues.00005’ ‘blues.00011’ ‘blues.00017’ ‘blues.00020’ ‘blues.00022’ ‘blues.00023’ ‘blues.00029’ ‘blues.00030’ ‘blues.00031’ ‘blues.00032’ … CSV
1.0 compared with gkiokas2012/default (294 differences): ‘blues.00000’ ‘blues.00002’ ‘blues.00004’ ‘blues.00008’ ‘blues.00010’ ‘blues.00017’ ‘blues.00023’ ‘blues.00029’ ‘blues.00033’ ‘blues.00035’ ‘blues.00036’ … CSV
1.0 compared with klapuri2006/percival2014 (310 differences): ‘blues.00006’ ‘blues.00008’ ‘blues.00010’ ‘blues.00011’ ‘blues.00017’ ‘blues.00023’ ‘blues.00029’ ‘blues.00031’ ‘blues.00032’ ‘blues.00035’ ‘blues.00037’ … CSV
1.0 compared with oliveira2010/ibt (399 differences): ‘blues.00001’ ‘blues.00003’ ‘blues.00005’ ‘blues.00006’ ‘blues.00008’ ‘blues.00011’ ‘blues.00017’ ‘blues.00023’ ‘blues.00025’ ‘blues.00032’ ‘blues.00035’ … CSV
1.0 compared with percival2014/stem (231 differences): ‘blues.00002’ ‘blues.00003’ ‘blues.00008’ ‘blues.00010’ ‘blues.00017’ ‘blues.00023’ ‘blues.00029’ ‘blues.00030’ ‘blues.00031’ ‘blues.00032’ ‘blues.00035’ … CSV
1.0 compared with scheirer1998/percival2014 (442 differences): ‘blues.00000’ ‘blues.00004’ ‘blues.00006’ ‘blues.00008’ ‘blues.00010’ ‘blues.00011’ ‘blues.00013’ ‘blues.00014’ ‘blues.00017’ ‘blues.00019’ ‘blues.00020’ … CSV
1.0 compared with schreiber2014/default (240 differences): ‘blues.00001’ ‘blues.00002’ ‘blues.00003’ ‘blues.00005’ ‘blues.00008’ ‘blues.00010’ ‘blues.00011’ ‘blues.00017’ ‘blues.00023’ ‘blues.00029’ ‘blues.00031’ … CSV
1.0 compared with schreiber2017/ismir2017 (234 differences): ‘blues.00008’ ‘blues.00010’ ‘blues.00011’ ‘blues.00017’ ‘blues.00020’ ‘blues.00023’ ‘blues.00029’ ‘blues.00031’ ‘blues.00032’ ‘blues.00033’ ‘blues.00035’ … CSV
1.0 compared with schreiber2017/mirex2017 (120 differences): ‘blues.00017’ ‘blues.00021’ ‘blues.00023’ ‘blues.00029’ ‘blues.00031’ ‘blues.00035’ ‘blues.00042’ ‘blues.00047’ ‘blues.00069’ ‘blues.00076’ ‘blues.00077’ … CSV
1.0 compared with schreiber2018/cnn (298 differences): ‘blues.00006’ ‘blues.00011’ ‘blues.00015’ ‘blues.00017’ ‘blues.00022’ ‘blues.00023’ ‘blues.00029’ ‘blues.00032’ ‘blues.00033’ ‘blues.00035’ ‘blues.00037’ … CSV
1.0 compared with schreiber2018/fcn (284 differences): ‘blues.00001’ ‘blues.00010’ ‘blues.00011’ ‘blues.00017’ ‘blues.00023’ ‘blues.00029’ ‘blues.00032’ ‘blues.00033’ ‘blues.00035’ ‘blues.00037’ ‘blues.00040’ … CSV
1.0 compared with schreiber2018/ismir2018 (326 differences): ‘blues.00001’ ‘blues.00003’ ‘blues.00005’ ‘blues.00006’ ‘blues.00011’ ‘blues.00017’ ‘blues.00023’ ‘blues.00029’ ‘blues.00031’ ‘blues.00033’ ‘blues.00035’ … CSV
1.0 compared with sun2021/default (350 differences): ‘blues.00001’ ‘blues.00005’ ‘blues.00006’ ‘blues.00007’ ‘blues.00011’ ‘blues.00017’ ‘blues.00023’ ‘blues.00029’ ‘blues.00032’ ‘blues.00033’ ‘blues.00034’ … CSV
1.0 compared with zplane/auftakt_v3 (321 differences): ‘blues.00002’ ‘blues.00003’ ‘blues.00006’ ‘blues.00008’ ‘blues.00011’ ‘blues.00017’ ‘blues.00018’ ‘blues.00023’ ‘blues.00029’ ‘blues.00032’ ‘blues.00035’ … CSV
2.0 compared with boeck2015/tempodetector2016_default (293 differences): ‘blues.00008’ ‘blues.00011’ ‘blues.00016’ ‘blues.00025’ ‘blues.00031’ ‘blues.00032’ ‘blues.00033’ ‘blues.00035’ ‘blues.00036’ ‘blues.00037’ ‘blues.00040’ … CSV
2.0 compared with boeck2019/multi_task (231 differences): ‘blues.00008’ ‘blues.00017’ ‘blues.00029’ ‘blues.00030’ ‘blues.00031’ ‘blues.00033’ ‘blues.00037’ ‘blues.00038’ ‘blues.00042’ ‘blues.00047’ ‘blues.00052’ … CSV
2.0 compared with boeck2019/multi_task_hjdb (226 differences): ‘blues.00002’ ‘blues.00008’ ‘blues.00017’ ‘blues.00029’ ‘blues.00030’ ‘blues.00031’ ‘blues.00033’ ‘blues.00036’ ‘blues.00037’ ‘blues.00038’ ‘blues.00040’ … CSV
2.0 compared with boeck2020/dar (322 differences): ‘blues.00011’ ‘blues.00016’ ‘blues.00032’ ‘blues.00033’ ‘blues.00035’ ‘blues.00037’ ‘blues.00040’ ‘blues.00042’ ‘blues.00047’ ‘blues.00051’ ‘blues.00052’ … CSV
2.0 compared with davies2009/mirex_qm_tempotracker (399 differences): ‘blues.00006’ ‘blues.00007’ ‘blues.00008’ ‘blues.00009’ ‘blues.00011’ ‘blues.00025’ ‘blues.00030’ ‘blues.00032’ ‘blues.00034’ ‘blues.00035’ ‘blues.00037’ … CSV
2.0 compared with echonest/version_3_2_1 (320 differences): ‘blues.00002’ ‘blues.00005’ ‘blues.00011’ ‘blues.00017’ ‘blues.00020’ ‘blues.00022’ ‘blues.00030’ ‘blues.00031’ ‘blues.00032’ ‘blues.00035’ ‘blues.00037’ … CSV
2.0 compared with gkiokas2012/default (283 differences): ‘blues.00000’ ‘blues.00002’ ‘blues.00004’ ‘blues.00008’ ‘blues.00010’ ‘blues.00017’ ‘blues.00033’ ‘blues.00035’ ‘blues.00036’ ‘blues.00037’ ‘blues.00040’ … CSV
2.0 compared with klapuri2006/percival2014 (296 differences): ‘blues.00006’ ‘blues.00008’ ‘blues.00010’ ‘blues.00011’ ‘blues.00017’ ‘blues.00031’ ‘blues.00032’ ‘blues.00035’ ‘blues.00037’ ‘blues.00042’ ‘blues.00047’ … CSV
2.0 compared with oliveira2010/ibt (390 differences): ‘blues.00001’ ‘blues.00003’ ‘blues.00005’ ‘blues.00006’ ‘blues.00008’ ‘blues.00011’ ‘blues.00017’ ‘blues.00025’ ‘blues.00032’ ‘blues.00035’ ‘blues.00037’ … CSV
2.0 compared with percival2014/stem (219 differences): ‘blues.00002’ ‘blues.00003’ ‘blues.00008’ ‘blues.00010’ ‘blues.00017’ ‘blues.00029’ ‘blues.00030’ ‘blues.00031’ ‘blues.00032’ ‘blues.00035’ ‘blues.00036’ … CSV
2.0 compared with scheirer1998/percival2014 (433 differences): ‘blues.00000’ ‘blues.00004’ ‘blues.00006’ ‘blues.00008’ ‘blues.00010’ ‘blues.00011’ ‘blues.00013’ ‘blues.00014’ ‘blues.00017’ ‘blues.00019’ ‘blues.00020’ … CSV
2.0 compared with schreiber2014/default (226 differences): ‘blues.00001’ ‘blues.00002’ ‘blues.00003’ ‘blues.00005’ ‘blues.00008’ ‘blues.00010’ ‘blues.00011’ ‘blues.00017’ ‘blues.00031’ ‘blues.00032’ ‘blues.00033’ … CSV
2.0 compared with schreiber2017/ismir2017 (219 differences): ‘blues.00008’ ‘blues.00010’ ‘blues.00011’ ‘blues.00017’ ‘blues.00020’ ‘blues.00031’ ‘blues.00032’ ‘blues.00033’ ‘blues.00035’ ‘blues.00037’ ‘blues.00040’ … CSV
2.0 compared with schreiber2017/mirex2017 (110 differences): ‘blues.00017’ ‘blues.00021’ ‘blues.00031’ ‘blues.00035’ ‘blues.00042’ ‘blues.00047’ ‘blues.00069’ ‘blues.00076’ ‘blues.00077’ ‘blues.00082’ ‘blues.00083’ … CSV
2.0 compared with schreiber2018/cnn (283 differences): ‘blues.00006’ ‘blues.00011’ ‘blues.00015’ ‘blues.00017’ ‘blues.00022’ ‘blues.00032’ ‘blues.00033’ ‘blues.00035’ ‘blues.00037’ ‘blues.00040’ ‘blues.00047’ … CSV
2.0 compared with schreiber2018/fcn (273 differences): ‘blues.00001’ ‘blues.00010’ ‘blues.00011’ ‘blues.00017’ ‘blues.00032’ ‘blues.00033’ ‘blues.00035’ ‘blues.00037’ ‘blues.00040’ ‘blues.00047’ ‘blues.00049’ … CSV
2.0 compared with schreiber2018/ismir2018 (314 differences): ‘blues.00001’ ‘blues.00003’ ‘blues.00005’ ‘blues.00006’ ‘blues.00011’ ‘blues.00017’ ‘blues.00031’ ‘blues.00033’ ‘blues.00035’ ‘blues.00037’ ‘blues.00042’ … CSV
2.0 compared with sun2021/default (338 differences): ‘blues.00001’ ‘blues.00005’ ‘blues.00006’ ‘blues.00007’ ‘blues.00011’ ‘blues.00017’ ‘blues.00032’ ‘blues.00033’ ‘blues.00034’ ‘blues.00035’ ‘blues.00037’ … CSV
2.0 compared with zplane/auftakt_v3 (311 differences): ‘blues.00002’ ‘blues.00003’ ‘blues.00006’ ‘blues.00008’ ‘blues.00011’ ‘blues.00017’ ‘blues.00018’ ‘blues.00032’ ‘blues.00035’ ‘blues.00037’ ‘blues.00038’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI compared with boeck2015/tempodetector2016_default (219 differences): ‘blues.00008’ ‘blues.00010’ ‘blues.00011’ ‘blues.00016’ ‘blues.00025’ ‘blues.00031’ ‘blues.00032’ ‘blues.00033’ ‘blues.00036’ ‘blues.00038’ ‘blues.00042’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI compared with boeck2019/multi_task (295 differences): ‘blues.00008’ ‘blues.00010’ ‘blues.00017’ ‘blues.00029’ ‘blues.00030’ ‘blues.00031’ ‘blues.00032’ ‘blues.00033’ ‘blues.00035’ ‘blues.00038’ ‘blues.00040’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI compared with boeck2019/multi_task_hjdb (319 differences): ‘blues.00002’ ‘blues.00008’ ‘blues.00010’ ‘blues.00017’ ‘blues.00029’ ‘blues.00030’ ‘blues.00031’ ‘blues.00032’ ‘blues.00033’ ‘blues.00035’ ‘blues.00036’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI compared with boeck2020/dar (149 differences): ‘blues.00010’ ‘blues.00011’ ‘blues.00016’ ‘blues.00032’ ‘blues.00033’ ‘blues.00038’ ‘blues.00042’ ‘blues.00044’ ‘blues.00045’ ‘blues.00052’ ‘blues.00056’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI compared with davies2009/mirex_qm_tempotracker (290 differences): ‘blues.00008’ ‘blues.00009’ ‘blues.00010’ ‘blues.00011’ ‘blues.00025’ ‘blues.00030’ ‘blues.00034’ ‘blues.00038’ ‘blues.00040’ ‘blues.00042’ ‘blues.00044’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI compared with echonest/version_3_2_1 (341 differences): ‘blues.00002’ ‘blues.00005’ ‘blues.00010’ ‘blues.00011’ ‘blues.00017’ ‘blues.00020’ ‘blues.00022’ ‘blues.00030’ ‘blues.00031’ ‘blues.00032’ ‘blues.00035’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI compared with gkiokas2012/default (337 differences): ‘blues.00000’ ‘blues.00002’ ‘blues.00004’ ‘blues.00008’ ‘blues.00017’ ‘blues.00031’ ‘blues.00032’ ‘blues.00033’ ‘blues.00036’ ‘blues.00038’ ‘blues.00041’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI compared with klapuri2006/percival2014 (297 differences): ‘blues.00006’ ‘blues.00008’ ‘blues.00011’ ‘blues.00017’ ‘blues.00031’ ‘blues.00038’ ‘blues.00040’ ‘blues.00042’ ‘blues.00044’ ‘blues.00045’ ‘blues.00049’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI compared with oliveira2010/ibt (309 differences): ‘blues.00001’ ‘blues.00003’ ‘blues.00005’ ‘blues.00006’ ‘blues.00008’ ‘blues.00010’ ‘blues.00011’ ‘blues.00017’ ‘blues.00033’ ‘blues.00037’ ‘blues.00039’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI compared with percival2014/stem (317 differences): ‘blues.00002’ ‘blues.00003’ ‘blues.00008’ ‘blues.00017’ ‘blues.00029’ ‘blues.00030’ ‘blues.00032’ ‘blues.00036’ ‘blues.00038’ ‘blues.00040’ ‘blues.00044’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI compared with scheirer1998/percival2014 (482 differences): ‘blues.00000’ ‘blues.00004’ ‘blues.00008’ ‘blues.00011’ ‘blues.00012’ ‘blues.00013’ ‘blues.00017’ ‘blues.00019’ ‘blues.00020’ ‘blues.00023’ ‘blues.00029’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI compared with schreiber2014/default (316 differences): ‘blues.00001’ ‘blues.00002’ ‘blues.00003’ ‘blues.00005’ ‘blues.00008’ ‘blues.00011’ ‘blues.00017’ ‘blues.00032’ ‘blues.00033’ ‘blues.00035’ ‘blues.00038’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI compared with schreiber2017/ismir2017 (295 differences): ‘blues.00008’ ‘blues.00011’ ‘blues.00017’ ‘blues.00020’ ‘blues.00032’ ‘blues.00033’ ‘blues.00038’ ‘blues.00042’ ‘blues.00044’ ‘blues.00045’ ‘blues.00047’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI compared with schreiber2017/mirex2017 (323 differences): ‘blues.00010’ ‘blues.00017’ ‘blues.00021’ ‘blues.00032’ ‘blues.00037’ ‘blues.00038’ ‘blues.00040’ ‘blues.00042’ ‘blues.00044’ ‘blues.00045’ ‘blues.00051’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI compared with schreiber2018/cnn (230 differences): ‘blues.00006’ ‘blues.00010’ ‘blues.00011’ ‘blues.00015’ ‘blues.00017’ ‘blues.00022’ ‘blues.00032’ ‘blues.00033’ ‘blues.00038’ ‘blues.00044’ ‘blues.00045’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI compared with schreiber2018/fcn (247 differences): ‘blues.00001’ ‘blues.00011’ ‘blues.00017’ ‘blues.00033’ ‘blues.00038’ ‘blues.00044’ ‘blues.00045’ ‘blues.00047’ ‘blues.00049’ ‘blues.00077’ ‘blues.00078’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI compared with schreiber2018/ismir2018 (225 differences): ‘blues.00001’ ‘blues.00003’ ‘blues.00005’ ‘blues.00006’ ‘blues.00010’ ‘blues.00011’ ‘blues.00017’ ‘blues.00032’ ‘blues.00033’ ‘blues.00038’ ‘blues.00040’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI compared with sun2021/default (196 differences): ‘blues.00001’ ‘blues.00005’ ‘blues.00006’ ‘blues.00010’ ‘blues.00011’ ‘blues.00017’ ‘blues.00032’ ‘blues.00033’ ‘blues.00034’ ‘blues.00037’ ‘blues.00038’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI compared with zplane/auftakt_v3 (319 differences): ‘blues.00002’ ‘blues.00003’ ‘blues.00006’ ‘blues.00008’ ‘blues.00010’ ‘blues.00011’ ‘blues.00017’ ‘blues.00018’ ‘blues.00035’ ‘blues.00037’ ‘blues.00038’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI compared with boeck2015/tempodetector2016_default (219 differences): ‘blues.00008’ ‘blues.00010’ ‘blues.00011’ ‘blues.00016’ ‘blues.00025’ ‘blues.00031’ ‘blues.00032’ ‘blues.00033’ ‘blues.00036’ ‘blues.00038’ ‘blues.00042’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI compared with boeck2019/multi_task (296 differences): ‘blues.00008’ ‘blues.00010’ ‘blues.00017’ ‘blues.00029’ ‘blues.00030’ ‘blues.00031’ ‘blues.00032’ ‘blues.00033’ ‘blues.00035’ ‘blues.00038’ ‘blues.00040’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI compared with boeck2019/multi_task_hjdb (321 differences): ‘blues.00002’ ‘blues.00008’ ‘blues.00010’ ‘blues.00017’ ‘blues.00029’ ‘blues.00030’ ‘blues.00031’ ‘blues.00032’ ‘blues.00033’ ‘blues.00035’ ‘blues.00036’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI compared with boeck2020/dar (148 differences): ‘blues.00010’ ‘blues.00011’ ‘blues.00016’ ‘blues.00032’ ‘blues.00033’ ‘blues.00038’ ‘blues.00042’ ‘blues.00044’ ‘blues.00045’ ‘blues.00052’ ‘blues.00056’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI compared with davies2009/mirex_qm_tempotracker (292 differences): ‘blues.00008’ ‘blues.00009’ ‘blues.00010’ ‘blues.00011’ ‘blues.00025’ ‘blues.00030’ ‘blues.00034’ ‘blues.00038’ ‘blues.00040’ ‘blues.00042’ ‘blues.00044’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI compared with echonest/version_3_2_1 (342 differences): ‘blues.00002’ ‘blues.00005’ ‘blues.00010’ ‘blues.00011’ ‘blues.00017’ ‘blues.00020’ ‘blues.00022’ ‘blues.00030’ ‘blues.00031’ ‘blues.00032’ ‘blues.00035’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI compared with gkiokas2012/default (338 differences): ‘blues.00000’ ‘blues.00002’ ‘blues.00004’ ‘blues.00008’ ‘blues.00017’ ‘blues.00031’ ‘blues.00032’ ‘blues.00033’ ‘blues.00036’ ‘blues.00038’ ‘blues.00041’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI compared with klapuri2006/percival2014 (295 differences): ‘blues.00006’ ‘blues.00008’ ‘blues.00011’ ‘blues.00017’ ‘blues.00031’ ‘blues.00038’ ‘blues.00040’ ‘blues.00042’ ‘blues.00044’ ‘blues.00045’ ‘blues.00049’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI compared with oliveira2010/ibt (311 differences): ‘blues.00001’ ‘blues.00003’ ‘blues.00005’ ‘blues.00006’ ‘blues.00008’ ‘blues.00010’ ‘blues.00011’ ‘blues.00017’ ‘blues.00037’ ‘blues.00039’ ‘blues.00040’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI compared with percival2014/stem (318 differences): ‘blues.00002’ ‘blues.00003’ ‘blues.00008’ ‘blues.00017’ ‘blues.00029’ ‘blues.00030’ ‘blues.00032’ ‘blues.00036’ ‘blues.00038’ ‘blues.00040’ ‘blues.00044’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI compared with scheirer1998/percival2014 (484 differences): ‘blues.00000’ ‘blues.00004’ ‘blues.00006’ ‘blues.00008’ ‘blues.00011’ ‘blues.00012’ ‘blues.00013’ ‘blues.00014’ ‘blues.00017’ ‘blues.00019’ ‘blues.00020’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI compared with schreiber2014/default (315 differences): ‘blues.00001’ ‘blues.00002’ ‘blues.00003’ ‘blues.00005’ ‘blues.00008’ ‘blues.00011’ ‘blues.00017’ ‘blues.00032’ ‘blues.00033’ ‘blues.00035’ ‘blues.00038’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI compared with schreiber2017/ismir2017 (296 differences): ‘blues.00008’ ‘blues.00011’ ‘blues.00017’ ‘blues.00020’ ‘blues.00032’ ‘blues.00033’ ‘blues.00038’ ‘blues.00042’ ‘blues.00044’ ‘blues.00045’ ‘blues.00047’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI compared with schreiber2017/mirex2017 (322 differences): ‘blues.00010’ ‘blues.00017’ ‘blues.00021’ ‘blues.00032’ ‘blues.00037’ ‘blues.00038’ ‘blues.00040’ ‘blues.00042’ ‘blues.00044’ ‘blues.00045’ ‘blues.00051’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI compared with schreiber2018/cnn (230 differences): ‘blues.00006’ ‘blues.00010’ ‘blues.00011’ ‘blues.00015’ ‘blues.00017’ ‘blues.00022’ ‘blues.00032’ ‘blues.00033’ ‘blues.00038’ ‘blues.00044’ ‘blues.00045’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI compared with schreiber2018/fcn (246 differences): ‘blues.00001’ ‘blues.00011’ ‘blues.00017’ ‘blues.00033’ ‘blues.00038’ ‘blues.00044’ ‘blues.00045’ ‘blues.00047’ ‘blues.00049’ ‘blues.00077’ ‘blues.00078’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI compared with schreiber2018/ismir2018 (226 differences): ‘blues.00001’ ‘blues.00003’ ‘blues.00005’ ‘blues.00006’ ‘blues.00010’ ‘blues.00011’ ‘blues.00017’ ‘blues.00032’ ‘blues.00033’ ‘blues.00038’ ‘blues.00040’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI compared with sun2021/default (193 differences): ‘blues.00001’ ‘blues.00005’ ‘blues.00006’ ‘blues.00010’ ‘blues.00011’ ‘blues.00017’ ‘blues.00032’ ‘blues.00033’ ‘blues.00034’ ‘blues.00037’ ‘blues.00038’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI compared with zplane/auftakt_v3 (320 differences): ‘blues.00002’ ‘blues.00003’ ‘blues.00006’ ‘blues.00008’ ‘blues.00010’ ‘blues.00011’ ‘blues.00017’ ‘blues.00018’ ‘blues.00035’ ‘blues.00037’ ‘blues.00038’ … CSV
None of the estimators estimated the following 6 items ‘correctly’ using Accuracy1: ‘classical.00036’ ‘classical.00067’ ‘classical.00080’ ‘jazz.00026’ ‘reggae.00098’ ‘reggae.00099’ CSV
Differing Items Accuracy2
Items with different tempo annotations (Accuracy2, 4% tolerance) in different versions:
1.0 compared with boeck2015/tempodetector2016_default (58 differences): ‘blues.00023’ ‘blues.00032’ ‘blues.00037’ ‘blues.00042’ ‘blues.00047’ ‘blues.00093’ ‘classical.00032’ ‘classical.00033’ ‘classical.00034’ ‘classical.00036’ ‘classical.00037’ … CSV
1.0 compared with boeck2019/multi_task (66 differences): ‘blues.00023’ ‘blues.00037’ ‘blues.00047’ ‘blues.00052’ ‘blues.00056’ ‘blues.00093’ ‘classical.00001’ ‘classical.00032’ ‘classical.00034’ ‘classical.00036’ ‘classical.00037’ … CSV
1.0 compared with boeck2019/multi_task_hjdb (64 differences): ‘blues.00023’ ‘blues.00037’ ‘blues.00047’ ‘blues.00052’ ‘blues.00056’ ‘blues.00093’ ‘classical.00001’ ‘classical.00032’ ‘classical.00034’ ‘classical.00036’ ‘classical.00037’ … CSV
1.0 compared with boeck2020/dar (48 differences): ‘blues.00023’ ‘blues.00032’ ‘blues.00037’ ‘blues.00052’ ‘classical.00032’ ‘classical.00033’ ‘classical.00034’ ‘classical.00036’ ‘classical.00037’ ‘classical.00039’ ‘classical.00041’ … CSV
1.0 compared with davies2009/mirex_qm_tempotracker (114 differences): ‘blues.00006’ ‘blues.00007’ ‘blues.00009’ ‘blues.00023’ ‘blues.00029’ ‘blues.00030’ ‘blues.00037’ ‘blues.00038’ ‘blues.00040’ ‘blues.00042’ ‘blues.00068’ … CSV
1.0 compared with echonest/version_3_2_1 (143 differences): ‘blues.00005’ ‘blues.00011’ ‘blues.00022’ ‘blues.00023’ ‘blues.00029’ ‘blues.00030’ ‘blues.00031’ ‘blues.00032’ ‘blues.00035’ ‘blues.00037’ ‘blues.00038’ … CSV
1.0 compared with gkiokas2012/default (80 differences): ‘blues.00023’ ‘blues.00029’ ‘blues.00036’ ‘blues.00037’ ‘blues.00042’ ‘blues.00047’ ‘blues.00093’ ‘classical.00003’ ‘classical.00009’ ‘classical.00019’ ‘classical.00027’ … CSV
1.0 compared with klapuri2006/percival2014 (90 differences): ‘blues.00006’ ‘blues.00011’ ‘blues.00023’ ‘blues.00029’ ‘blues.00031’ ‘blues.00032’ ‘blues.00037’ ‘blues.00042’ ‘blues.00056’ ‘blues.00069’ ‘blues.00072’ … CSV
1.0 compared with oliveira2010/ibt (139 differences): ‘blues.00001’ ‘blues.00003’ ‘blues.00005’ ‘blues.00006’ ‘blues.00011’ ‘blues.00023’ ‘blues.00025’ ‘blues.00035’ ‘blues.00037’ ‘blues.00038’ ‘blues.00039’ … CSV
1.0 compared with percival2014/stem (72 differences): ‘blues.00023’ ‘blues.00029’ ‘blues.00030’ ‘blues.00031’ ‘blues.00032’ ‘blues.00036’ ‘blues.00037’ ‘blues.00072’ ‘blues.00093’ ‘classical.00003’ ‘classical.00007’ … CSV
1.0 compared with scheirer1998/percival2014 (243 differences): ‘blues.00006’ ‘blues.00010’ ‘blues.00011’ ‘blues.00013’ ‘blues.00014’ ‘blues.00017’ ‘blues.00019’ ‘blues.00023’ ‘blues.00029’ ‘blues.00030’ ‘blues.00032’ … CSV
1.0 compared with schreiber2014/default (83 differences): ‘blues.00003’ ‘blues.00023’ ‘blues.00029’ ‘blues.00031’ ‘blues.00032’ ‘blues.00037’ ‘blues.00042’ ‘blues.00047’ ‘blues.00052’ ‘blues.00056’ ‘blues.00069’ … CSV
1.0 compared with schreiber2017/ismir2017 (76 differences): ‘blues.00023’ ‘blues.00029’ ‘blues.00031’ ‘blues.00032’ ‘blues.00037’ ‘blues.00047’ ‘blues.00052’ ‘blues.00056’ ‘blues.00069’ ‘blues.00093’ ‘blues.00096’ … CSV
1.0 compared with schreiber2017/mirex2017 (56 differences): ‘blues.00023’ ‘blues.00029’ ‘blues.00031’ ‘blues.00047’ ‘blues.00069’ ‘blues.00096’ ‘classical.00001’ ‘classical.00012’ ‘classical.00018’ ‘classical.00023’ ‘classical.00033’ … CSV
1.0 compared with schreiber2018/cnn (64 differences): ‘blues.00006’ ‘blues.00023’ ‘blues.00029’ ‘blues.00032’ ‘blues.00037’ ‘blues.00047’ ‘blues.00093’ ‘classical.00007’ ‘classical.00009’ ‘classical.00012’ ‘classical.00015’ … CSV
1.0 compared with schreiber2018/fcn (73 differences): ‘blues.00023’ ‘blues.00029’ ‘blues.00037’ ‘blues.00047’ ‘blues.00093’ ‘classical.00001’ ‘classical.00003’ ‘classical.00007’ ‘classical.00009’ ‘classical.00012’ ‘classical.00015’ … CSV
1.0 compared with schreiber2018/ismir2018 (80 differences): ‘blues.00006’ ‘blues.00011’ ‘blues.00023’ ‘blues.00029’ ‘blues.00031’ ‘blues.00037’ ‘blues.00042’ ‘blues.00047’ ‘blues.00056’ ‘blues.00093’ ‘classical.00007’ … CSV
1.0 compared with sun2021/default (87 differences): ‘blues.00005’ ‘blues.00007’ ‘blues.00023’ ‘blues.00029’ ‘blues.00032’ ‘blues.00037’ ‘blues.00042’ ‘blues.00047’ ‘blues.00052’ ‘blues.00056’ ‘blues.00089’ … CSV
1.0 compared with zplane/auftakt_v3 (122 differences): ‘blues.00011’ ‘blues.00023’ ‘blues.00029’ ‘blues.00032’ ‘blues.00035’ ‘blues.00037’ ‘blues.00038’ ‘blues.00042’ ‘blues.00052’ ‘blues.00056’ ‘blues.00063’ … CSV
2.0 compared with boeck2015/tempodetector2016_default (44 differences): ‘blues.00032’ ‘blues.00037’ ‘blues.00042’ ‘blues.00047’ ‘blues.00093’ ‘classical.00006’ ‘classical.00032’ ‘classical.00033’ ‘classical.00036’ ‘classical.00037’ ‘classical.00041’ … CSV
2.0 compared with boeck2019/multi_task (53 differences): ‘blues.00037’ ‘blues.00047’ ‘blues.00052’ ‘blues.00056’ ‘blues.00093’ ‘classical.00001’ ‘classical.00006’ ‘classical.00032’ ‘classical.00036’ ‘classical.00037’ ‘classical.00039’ … CSV
2.0 compared with boeck2019/multi_task_hjdb (50 differences): ‘blues.00037’ ‘blues.00047’ ‘blues.00052’ ‘blues.00056’ ‘blues.00093’ ‘classical.00001’ ‘classical.00006’ ‘classical.00032’ ‘classical.00036’ ‘classical.00037’ ‘classical.00039’ … CSV
2.0 compared with boeck2020/dar (34 differences): ‘blues.00032’ ‘blues.00037’ ‘blues.00052’ ‘classical.00006’ ‘classical.00032’ ‘classical.00033’ ‘classical.00036’ ‘classical.00037’ ‘classical.00039’ ‘classical.00041’ ‘classical.00043’ … CSV
2.0 compared with davies2009/mirex_qm_tempotracker (99 differences): ‘blues.00006’ ‘blues.00007’ ‘blues.00009’ ‘blues.00030’ ‘blues.00037’ ‘blues.00038’ ‘blues.00040’ ‘blues.00042’ ‘blues.00068’ ‘blues.00072’ ‘blues.00089’ … CSV
2.0 compared with echonest/version_3_2_1 (130 differences): ‘blues.00005’ ‘blues.00011’ ‘blues.00022’ ‘blues.00030’ ‘blues.00031’ ‘blues.00032’ ‘blues.00035’ ‘blues.00037’ ‘blues.00038’ ‘blues.00042’ ‘blues.00047’ … CSV
2.0 compared with gkiokas2012/default (62 differences): ‘blues.00036’ ‘blues.00037’ ‘blues.00042’ ‘blues.00047’ ‘blues.00093’ ‘classical.00003’ ‘classical.00009’ ‘classical.00031’ ‘classical.00032’ ‘classical.00036’ ‘classical.00037’ … CSV
2.0 compared with klapuri2006/percival2014 (75 differences): ‘blues.00006’ ‘blues.00011’ ‘blues.00031’ ‘blues.00032’ ‘blues.00037’ ‘blues.00042’ ‘blues.00056’ ‘blues.00069’ ‘blues.00072’ ‘blues.00093’ ‘classical.00003’ … CSV
2.0 compared with oliveira2010/ibt (130 differences): ‘blues.00001’ ‘blues.00003’ ‘blues.00005’ ‘blues.00006’ ‘blues.00011’ ‘blues.00025’ ‘blues.00035’ ‘blues.00037’ ‘blues.00038’ ‘blues.00039’ ‘blues.00042’ … CSV
2.0 compared with percival2014/stem (58 differences): ‘blues.00030’ ‘blues.00031’ ‘blues.00032’ ‘blues.00036’ ‘blues.00037’ ‘blues.00072’ ‘blues.00093’ ‘classical.00003’ ‘classical.00006’ ‘classical.00007’ ‘classical.00009’ … CSV
2.0 compared with scheirer1998/percival2014 (237 differences): ‘blues.00006’ ‘blues.00010’ ‘blues.00011’ ‘blues.00013’ ‘blues.00014’ ‘blues.00017’ ‘blues.00019’ ‘blues.00023’ ‘blues.00029’ ‘blues.00030’ ‘blues.00032’ … CSV
2.0 compared with schreiber2014/default (66 differences): ‘blues.00003’ ‘blues.00031’ ‘blues.00032’ ‘blues.00037’ ‘blues.00042’ ‘blues.00047’ ‘blues.00052’ ‘blues.00056’ ‘blues.00069’ ‘blues.00072’ ‘blues.00093’ … CSV
2.0 compared with schreiber2017/ismir2017 (61 differences): ‘blues.00031’ ‘blues.00032’ ‘blues.00037’ ‘blues.00047’ ‘blues.00052’ ‘blues.00056’ ‘blues.00069’ ‘blues.00093’ ‘blues.00096’ ‘classical.00001’ ‘classical.00006’ … CSV
2.0 compared with schreiber2017/mirex2017 (40 differences): ‘blues.00031’ ‘blues.00047’ ‘blues.00069’ ‘blues.00096’ ‘classical.00001’ ‘classical.00006’ ‘classical.00012’ ‘classical.00018’ ‘classical.00019’ ‘classical.00023’ ‘classical.00032’ … CSV
2.0 compared with schreiber2018/cnn (49 differences): ‘blues.00006’ ‘blues.00032’ ‘blues.00037’ ‘blues.00047’ ‘blues.00093’ ‘classical.00007’ ‘classical.00009’ ‘classical.00012’ ‘classical.00015’ ‘classical.00023’ ‘classical.00030’ … CSV
2.0 compared with schreiber2018/fcn (62 differences): ‘blues.00037’ ‘blues.00047’ ‘blues.00093’ ‘classical.00001’ ‘classical.00003’ ‘classical.00006’ ‘classical.00007’ ‘classical.00009’ ‘classical.00012’ ‘classical.00015’ ‘classical.00018’ … CSV
2.0 compared with schreiber2018/ismir2018 (67 differences): ‘blues.00006’ ‘blues.00011’ ‘blues.00031’ ‘blues.00037’ ‘blues.00042’ ‘blues.00047’ ‘blues.00056’ ‘blues.00093’ ‘classical.00006’ ‘classical.00007’ ‘classical.00009’ … CSV
2.0 compared with sun2021/default (75 differences): ‘blues.00005’ ‘blues.00007’ ‘blues.00032’ ‘blues.00037’ ‘blues.00042’ ‘blues.00047’ ‘blues.00052’ ‘blues.00056’ ‘blues.00089’ ‘blues.00093’ ‘classical.00006’ … CSV
2.0 compared with zplane/auftakt_v3 (108 differences): ‘blues.00011’ ‘blues.00032’ ‘blues.00035’ ‘blues.00037’ ‘blues.00038’ ‘blues.00042’ ‘blues.00052’ ‘blues.00056’ ‘blues.00063’ ‘blues.00069’ ‘blues.00072’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI compared with boeck2015/tempodetector2016_default (44 differences): ‘blues.00032’ ‘blues.00038’ ‘blues.00042’ ‘blues.00092’ ‘blues.00093’ ‘classical.00009’ ‘classical.00032’ ‘classical.00033’ ‘classical.00034’ ‘classical.00036’ ‘classical.00037’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI compared with boeck2019/multi_task (47 differences): ‘blues.00038’ ‘blues.00052’ ‘blues.00056’ ‘blues.00092’ ‘blues.00093’ ‘classical.00007’ ‘classical.00009’ ‘classical.00021’ ‘classical.00033’ ‘classical.00034’ ‘classical.00036’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI compared with boeck2019/multi_task_hjdb (48 differences): ‘blues.00038’ ‘blues.00052’ ‘blues.00056’ ‘blues.00092’ ‘blues.00093’ ‘classical.00007’ ‘classical.00009’ ‘classical.00021’ ‘classical.00033’ ‘classical.00034’ ‘classical.00036’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI compared with boeck2020/dar (38 differences): ‘blues.00032’ ‘blues.00038’ ‘blues.00052’ ‘blues.00092’ ‘blues.00093’ ‘classical.00007’ ‘classical.00009’ ‘classical.00033’ ‘classical.00034’ ‘classical.00036’ ‘classical.00037’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI compared with davies2009/mirex_qm_tempotracker (78 differences): ‘blues.00009’ ‘blues.00030’ ‘blues.00040’ ‘blues.00042’ ‘blues.00072’ ‘blues.00089’ ‘blues.00092’ ‘blues.00093’ ‘blues.00099’ ‘classical.00001’ ‘classical.00003’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI compared with echonest/version_3_2_1 (124 differences): ‘blues.00005’ ‘blues.00011’ ‘blues.00022’ ‘blues.00030’ ‘blues.00031’ ‘blues.00032’ ‘blues.00037’ ‘blues.00038’ ‘blues.00042’ ‘blues.00052’ ‘blues.00056’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI compared with gkiokas2012/default (64 differences): ‘blues.00031’ ‘blues.00036’ ‘blues.00038’ ‘blues.00042’ ‘blues.00073’ ‘blues.00092’ ‘blues.00093’ ‘classical.00003’ ‘classical.00007’ ‘classical.00027’ ‘classical.00031’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI compared with klapuri2006/percival2014 (72 differences): ‘blues.00006’ ‘blues.00011’ ‘blues.00031’ ‘blues.00038’ ‘blues.00042’ ‘blues.00056’ ‘blues.00069’ ‘blues.00072’ ‘blues.00092’ ‘classical.00003’ ‘classical.00006’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI compared with oliveira2010/ibt (121 differences): ‘blues.00001’ ‘blues.00003’ ‘blues.00005’ ‘blues.00006’ ‘blues.00011’ ‘blues.00033’ ‘blues.00037’ ‘blues.00039’ ‘blues.00042’ ‘blues.00044’ ‘blues.00069’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI compared with percival2014/stem (55 differences): ‘blues.00030’ ‘blues.00032’ ‘blues.00036’ ‘blues.00038’ ‘blues.00072’ ‘blues.00092’ ‘blues.00093’ ‘classical.00003’ ‘classical.00009’ ‘classical.00015’ ‘classical.00027’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI compared with scheirer1998/percival2014 (230 differences): ‘blues.00011’ ‘blues.00012’ ‘blues.00013’ ‘blues.00019’ ‘blues.00023’ ‘blues.00029’ ‘blues.00030’ ‘blues.00032’ ‘blues.00034’ ‘blues.00035’ ‘blues.00037’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI compared with schreiber2014/default (64 differences): ‘blues.00003’ ‘blues.00032’ ‘blues.00038’ ‘blues.00042’ ‘blues.00052’ ‘blues.00056’ ‘blues.00069’ ‘blues.00072’ ‘blues.00092’ ‘classical.00003’ ‘classical.00023’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI compared with schreiber2017/ismir2017 (64 differences): ‘blues.00032’ ‘blues.00038’ ‘blues.00052’ ‘blues.00056’ ‘blues.00069’ ‘blues.00092’ ‘blues.00096’ ‘classical.00001’ ‘classical.00012’ ‘classical.00023’ ‘classical.00030’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI compared with schreiber2017/mirex2017 (48 differences): ‘blues.00037’ ‘blues.00038’ ‘blues.00069’ ‘blues.00092’ ‘blues.00093’ ‘blues.00096’ ‘classical.00001’ ‘classical.00007’ ‘classical.00012’ ‘classical.00023’ ‘classical.00032’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI compared with schreiber2018/cnn (50 differences): ‘blues.00032’ ‘blues.00038’ ‘blues.00092’ ‘classical.00001’ ‘classical.00009’ ‘classical.00015’ ‘classical.00021’ ‘classical.00023’ ‘classical.00030’ ‘classical.00032’ ‘classical.00033’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI compared with schreiber2018/fcn (48 differences): ‘blues.00038’ ‘blues.00092’ ‘blues.00093’ ‘classical.00003’ ‘classical.00009’ ‘classical.00015’ ‘classical.00018’ ‘classical.00032’ ‘classical.00033’ ‘classical.00034’ ‘classical.00036’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI compared with schreiber2018/ismir2018 (65 differences): ‘blues.00011’ ‘blues.00032’ ‘blues.00038’ ‘blues.00042’ ‘blues.00056’ ‘blues.00073’ ‘blues.00092’ ‘classical.00001’ ‘classical.00009’ ‘classical.00027’ ‘classical.00030’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI compared with sun2021/default (69 differences): ‘blues.00005’ ‘blues.00032’ ‘blues.00037’ ‘blues.00038’ ‘blues.00042’ ‘blues.00052’ ‘blues.00056’ ‘blues.00089’ ‘blues.00092’ ‘blues.00093’ ‘classical.00007’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI compared with zplane/auftakt_v3 (108 differences): ‘blues.00011’ ‘blues.00035’ ‘blues.00038’ ‘blues.00042’ ‘blues.00052’ ‘blues.00056’ ‘blues.00063’ ‘blues.00069’ ‘blues.00072’ ‘blues.00092’ ‘blues.00093’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI compared with boeck2015/tempodetector2016_default (42 differences): ‘blues.00032’ ‘blues.00038’ ‘blues.00042’ ‘blues.00092’ ‘blues.00093’ ‘classical.00009’ ‘classical.00032’ ‘classical.00033’ ‘classical.00034’ ‘classical.00036’ ‘classical.00037’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI compared with boeck2019/multi_task (48 differences): ‘blues.00038’ ‘blues.00052’ ‘blues.00056’ ‘blues.00092’ ‘blues.00093’ ‘classical.00007’ ‘classical.00009’ ‘classical.00021’ ‘classical.00033’ ‘classical.00034’ ‘classical.00036’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI compared with boeck2019/multi_task_hjdb (50 differences): ‘blues.00038’ ‘blues.00052’ ‘blues.00056’ ‘blues.00092’ ‘blues.00093’ ‘classical.00007’ ‘classical.00009’ ‘classical.00021’ ‘classical.00032’ ‘classical.00033’ ‘classical.00034’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI compared with boeck2020/dar (37 differences): ‘blues.00032’ ‘blues.00038’ ‘blues.00052’ ‘blues.00092’ ‘blues.00093’ ‘classical.00007’ ‘classical.00033’ ‘classical.00034’ ‘classical.00036’ ‘classical.00037’ ‘classical.00039’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI compared with davies2009/mirex_qm_tempotracker (84 differences): ‘blues.00009’ ‘blues.00030’ ‘blues.00040’ ‘blues.00042’ ‘blues.00072’ ‘blues.00089’ ‘blues.00092’ ‘blues.00093’ ‘blues.00099’ ‘classical.00001’ ‘classical.00003’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI compared with echonest/version_3_2_1 (127 differences): ‘blues.00005’ ‘blues.00011’ ‘blues.00022’ ‘blues.00030’ ‘blues.00031’ ‘blues.00032’ ‘blues.00037’ ‘blues.00038’ ‘blues.00042’ ‘blues.00052’ ‘blues.00056’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI compared with gkiokas2012/default (66 differences): ‘blues.00031’ ‘blues.00036’ ‘blues.00038’ ‘blues.00042’ ‘blues.00073’ ‘blues.00092’ ‘blues.00093’ ‘classical.00003’ ‘classical.00007’ ‘classical.00026’ ‘classical.00027’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI compared with klapuri2006/percival2014 (71 differences): ‘blues.00006’ ‘blues.00011’ ‘blues.00031’ ‘blues.00038’ ‘blues.00042’ ‘blues.00056’ ‘blues.00069’ ‘blues.00072’ ‘blues.00092’ ‘classical.00003’ ‘classical.00006’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI compared with oliveira2010/ibt (125 differences): ‘blues.00001’ ‘blues.00003’ ‘blues.00005’ ‘blues.00006’ ‘blues.00011’ ‘blues.00037’ ‘blues.00039’ ‘blues.00042’ ‘blues.00044’ ‘blues.00069’ ‘blues.00072’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI compared with percival2014/stem (56 differences): ‘blues.00030’ ‘blues.00032’ ‘blues.00036’ ‘blues.00038’ ‘blues.00072’ ‘blues.00092’ ‘blues.00093’ ‘classical.00003’ ‘classical.00009’ ‘classical.00015’ ‘classical.00027’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI compared with scheirer1998/percival2014 (231 differences): ‘blues.00006’ ‘blues.00011’ ‘blues.00012’ ‘blues.00013’ ‘blues.00014’ ‘blues.00019’ ‘blues.00023’ ‘blues.00029’ ‘blues.00030’ ‘blues.00032’ ‘blues.00034’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI compared with schreiber2014/default (63 differences): ‘blues.00003’ ‘blues.00032’ ‘blues.00038’ ‘blues.00042’ ‘blues.00052’ ‘blues.00056’ ‘blues.00069’ ‘blues.00072’ ‘blues.00092’ ‘classical.00023’ ‘classical.00031’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI compared with schreiber2017/ismir2017 (65 differences): ‘blues.00032’ ‘blues.00038’ ‘blues.00052’ ‘blues.00056’ ‘blues.00069’ ‘blues.00092’ ‘blues.00096’ ‘classical.00001’ ‘classical.00012’ ‘classical.00023’ ‘classical.00026’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI compared with schreiber2017/mirex2017 (49 differences): ‘blues.00037’ ‘blues.00038’ ‘blues.00069’ ‘blues.00092’ ‘blues.00093’ ‘blues.00096’ ‘classical.00001’ ‘classical.00007’ ‘classical.00012’ ‘classical.00023’ ‘classical.00026’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI compared with schreiber2018/cnn (51 differences): ‘blues.00006’ ‘blues.00032’ ‘blues.00038’ ‘blues.00092’ ‘classical.00001’ ‘classical.00009’ ‘classical.00015’ ‘classical.00021’ ‘classical.00023’ ‘classical.00030’ ‘classical.00032’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI compared with schreiber2018/fcn (46 differences): ‘blues.00038’ ‘blues.00092’ ‘blues.00093’ ‘classical.00003’ ‘classical.00009’ ‘classical.00015’ ‘classical.00018’ ‘classical.00032’ ‘classical.00033’ ‘classical.00034’ ‘classical.00036’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI compared with schreiber2018/ismir2018 (66 differences): ‘blues.00011’ ‘blues.00032’ ‘blues.00038’ ‘blues.00042’ ‘blues.00056’ ‘blues.00073’ ‘blues.00092’ ‘classical.00001’ ‘classical.00009’ ‘classical.00027’ ‘classical.00030’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI compared with sun2021/default (65 differences): ‘blues.00005’ ‘blues.00032’ ‘blues.00037’ ‘blues.00038’ ‘blues.00042’ ‘blues.00052’ ‘blues.00056’ ‘blues.00089’ ‘blues.00092’ ‘blues.00093’ ‘classical.00007’ … CSV
GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI compared with zplane/auftakt_v3 (110 differences): ‘blues.00011’ ‘blues.00035’ ‘blues.00038’ ‘blues.00042’ ‘blues.00052’ ‘blues.00056’ ‘blues.00063’ ‘blues.00069’ ‘blues.00072’ ‘blues.00092’ ‘blues.00093’ … CSV
All tracks were estimated ‘correctly’ by at least one system.
Significance of Differences
Estimator | boeck2015/tempodetector2016_default | boeck2019/multi_task | boeck2019/multi_task_hjdb | boeck2020/dar | davies2009/mirex_qm_tempotracker | echonest/version_3_2_1 | gkiokas2012/default | klapuri2006/percival2014 | oliveira2010/ibt | percival2014/stem | scheirer1998/percival2014 | schreiber2014/default | schreiber2017/ismir2017 | schreiber2017/mirex2017 | schreiber2018/cnn | schreiber2018/fcn | schreiber2018/ismir2018 | sun2021/default | zplane/auftakt_v3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
boeck2015/tempodetector2016_default | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.4188 | 0.0546 | 0.6158 | 0.0412 | 0.0000 |
boeck2019/multi_task | 0.0000 | 1.0000 | 0.0005 | 0.0000 | 0.8577 | 0.0020 | 0.0057 | 1.0000 | 0.3933 | 0.1134 | 0.0000 | 0.1268 | 0.9358 | 0.0595 | 0.0000 | 0.0005 | 0.0000 | 0.0000 | 0.1090 |
boeck2019/multi_task_hjdb | 0.0000 | 0.0005 | 1.0000 | 0.0000 | 0.1077 | 0.1726 | 0.2861 | 0.1007 | 0.6009 | 0.8805 | 0.0000 | 0.6851 | 0.0633 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 |
boeck2020/dar | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0000 |
davies2009/mirex_qm_tempotracker | 0.0000 | 0.8577 | 0.1077 | 0.0000 | 1.0000 | 0.0014 | 0.0070 | 0.8681 | 0.1158 | 0.0948 | 0.0000 | 0.1649 | 0.8471 | 0.0908 | 0.0000 | 0.0033 | 0.0000 | 0.0000 | 0.0489 |
echonest/version_3_2_1 | 0.0000 | 0.0020 | 0.1726 | 0.0000 | 0.0014 | 1.0000 | 0.8352 | 0.0011 | 0.0455 | 0.1056 | 0.0000 | 0.0599 | 0.0014 | 0.1919 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1454 |
gkiokas2012/default | 0.0000 | 0.0057 | 0.2861 | 0.0000 | 0.0070 | 0.8352 | 1.0000 | 0.0045 | 0.1089 | 0.1636 | 0.0000 | 0.1058 | 0.0037 | 0.2960 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2517 |
klapuri2006/percival2014 | 0.0000 | 1.0000 | 0.1007 | 0.0000 | 0.8681 | 0.0011 | 0.0045 | 1.0000 | 0.1745 | 0.0564 | 0.0000 | 0.1331 | 1.0000 | 0.0680 | 0.0000 | 0.0007 | 0.0000 | 0.0000 | 0.0360 |
oliveira2010/ibt | 0.0000 | 0.3933 | 0.6009 | 0.0000 | 0.1158 | 0.0455 | 0.1089 | 0.1745 | 1.0000 | 0.6824 | 0.0000 | 0.8458 | 0.3506 | 0.5450 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.5150 |
percival2014/stem | 0.0000 | 0.1134 | 0.8805 | 0.0000 | 0.0948 | 0.1056 | 0.1636 | 0.0564 | 0.6824 | 1.0000 | 0.0000 | 0.8613 | 0.0864 | 0.8090 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.9349 |
scheirer1998/percival2014 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2014/default | 0.0000 | 0.1268 | 0.6851 | 0.0000 | 0.1649 | 0.0599 | 0.1058 | 0.1331 | 0.8458 | 0.8613 | 0.0000 | 1.0000 | 0.0761 | 0.6158 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.7610 |
schreiber2017/ismir2017 | 0.0000 | 0.9358 | 0.0633 | 0.0000 | 0.8471 | 0.0014 | 0.0037 | 1.0000 | 0.3506 | 0.0864 | 0.0000 | 0.0761 | 1.0000 | 0.0203 | 0.0000 | 0.0003 | 0.0000 | 0.0000 | 0.0725 |
schreiber2017/mirex2017 | 0.0000 | 0.0595 | 1.0000 | 0.0000 | 0.0908 | 0.1919 | 0.2960 | 0.0680 | 0.5450 | 0.8090 | 0.0000 | 0.6158 | 0.0203 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.9436 |
schreiber2018/cnn | 0.4188 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.2081 | 0.7984 | 0.0038 | 0.0000 |
schreiber2018/fcn | 0.0546 | 0.0005 | 0.0000 | 0.0000 | 0.0033 | 0.0000 | 0.0000 | 0.0007 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0003 | 0.0000 | 0.2081 | 1.0000 | 0.1306 | 0.0002 | 0.0000 |
schreiber2018/ismir2018 | 0.6158 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.7984 | 0.1306 | 1.0000 | 0.0066 | 0.0000 |
sun2021/default | 0.0412 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0038 | 0.0002 | 0.0066 | 1.0000 | 0.0000 |
zplane/auftakt_v3 | 0.0000 | 0.1090 | 1.0000 | 0.0000 | 0.0489 | 0.1454 | 0.2517 | 0.0360 | 0.5150 | 0.9349 | 0.0000 | 0.7610 | 0.0725 | 0.9436 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 |
Table 7: McNemar p-values, using reference annotations GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI as groundtruth with Accuracy1 [Gouyon2006]. H0: both estimators disagree with the groundtruth to the same amount. If p<=ɑ, reject H0, i.e. we have a significant difference in the disagreement with the groundtruth. In the table, p-values<0.05 are set in bold.
Estimator | boeck2015/tempodetector2016_default | boeck2019/multi_task | boeck2019/multi_task_hjdb | boeck2020/dar | davies2009/mirex_qm_tempotracker | echonest/version_3_2_1 | gkiokas2012/default | klapuri2006/percival2014 | oliveira2010/ibt | percival2014/stem | scheirer1998/percival2014 | schreiber2014/default | schreiber2017/ismir2017 | schreiber2017/mirex2017 | schreiber2018/cnn | schreiber2018/fcn | schreiber2018/ismir2018 | sun2021/default | zplane/auftakt_v3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
boeck2015/tempodetector2016_default | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.4218 | 0.0454 | 0.6769 | 0.0715 | 0.0000 |
boeck2019/multi_task | 0.0000 | 1.0000 | 0.0007 | 0.0000 | 0.8114 | 0.0019 | 0.0057 | 0.9452 | 0.4289 | 0.1134 | 0.0000 | 0.0898 | 0.9358 | 0.0418 | 0.0000 | 0.0009 | 0.0000 | 0.0000 | 0.1108 |
boeck2019/multi_task_hjdb | 0.0000 | 0.0007 | 1.0000 | 0.0000 | 0.1089 | 0.1511 | 0.2581 | 0.1680 | 0.6009 | 0.9403 | 0.0000 | 0.8715 | 0.0760 | 0.8250 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.9465 |
boeck2020/dar | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0000 |
davies2009/mirex_qm_tempotracker | 0.0000 | 0.8114 | 0.1089 | 0.0000 | 1.0000 | 0.0012 | 0.0057 | 0.6158 | 0.1102 | 0.0803 | 0.0000 | 0.1138 | 0.7967 | 0.0607 | 0.0001 | 0.0061 | 0.0000 | 0.0000 | 0.0428 |
echonest/version_3_2_1 | 0.0000 | 0.0019 | 0.1511 | 0.0000 | 0.0012 | 1.0000 | 0.8344 | 0.0021 | 0.0409 | 0.1021 | 0.0000 | 0.0793 | 0.0012 | 0.2408 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1454 |
gkiokas2012/default | 0.0000 | 0.0057 | 0.2581 | 0.0000 | 0.0057 | 0.8344 | 1.0000 | 0.0083 | 0.0978 | 0.1636 | 0.0000 | 0.1414 | 0.0039 | 0.3674 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2517 |
klapuri2006/percival2014 | 0.0000 | 0.9452 | 0.1680 | 0.0000 | 0.6158 | 0.0021 | 0.0083 | 1.0000 | 0.3193 | 0.1007 | 0.0000 | 0.1534 | 0.9358 | 0.0771 | 0.0000 | 0.0005 | 0.0000 | 0.0000 | 0.0655 |
oliveira2010/ibt | 0.0000 | 0.4289 | 0.6009 | 0.0000 | 0.1102 | 0.0409 | 0.0978 | 0.3193 | 1.0000 | 0.6323 | 0.0000 | 0.6967 | 0.3851 | 0.4322 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.4654 |
percival2014/stem | 0.0000 | 0.1134 | 0.9403 | 0.0000 | 0.0803 | 0.1021 | 0.1636 | 0.1007 | 0.6323 | 1.0000 | 0.0000 | 1.0000 | 0.0864 | 0.6870 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.9354 |
scheirer1998/percival2014 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2014/default | 0.0000 | 0.0898 | 0.8715 | 0.0000 | 0.1138 | 0.0793 | 0.1414 | 0.1534 | 0.6967 | 1.0000 | 0.0000 | 1.0000 | 0.0466 | 0.6134 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.8791 |
schreiber2017/ismir2017 | 0.0000 | 0.9358 | 0.0760 | 0.0000 | 0.7967 | 0.0012 | 0.0039 | 0.9358 | 0.3851 | 0.0864 | 0.0000 | 0.0466 | 1.0000 | 0.0122 | 0.0000 | 0.0004 | 0.0000 | 0.0000 | 0.0742 |
schreiber2017/mirex2017 | 0.0000 | 0.0418 | 0.8250 | 0.0000 | 0.0607 | 0.2408 | 0.3674 | 0.0771 | 0.4322 | 0.6870 | 0.0000 | 0.6134 | 0.0122 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.8320 |
schreiber2018/cnn | 0.4218 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.1778 | 0.7325 | 0.0082 | 0.0000 |
schreiber2018/fcn | 0.0454 | 0.0009 | 0.0000 | 0.0000 | 0.0061 | 0.0000 | 0.0000 | 0.0005 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0004 | 0.0000 | 0.1778 | 1.0000 | 0.0948 | 0.0003 | 0.0000 |
schreiber2018/ismir2018 | 0.6769 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.7325 | 0.0948 | 1.0000 | 0.0176 | 0.0000 |
sun2021/default | 0.0715 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0082 | 0.0003 | 0.0176 | 1.0000 | 0.0000 |
zplane/auftakt_v3 | 0.0000 | 0.1108 | 0.9465 | 0.0000 | 0.0428 | 0.1454 | 0.2517 | 0.0655 | 0.4654 | 0.9354 | 0.0000 | 0.8791 | 0.0742 | 0.8320 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 |
Table 8: McNemar p-values, using reference annotations GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI as groundtruth with Accuracy1 [Gouyon2006]. H0: both estimators disagree with the groundtruth to the same amount. If p<=ɑ, reject H0, i.e. we have a significant difference in the disagreement with the groundtruth. In the table, p-values<0.05 are set in bold.
Estimator | boeck2015/tempodetector2016_default | boeck2019/multi_task | boeck2019/multi_task_hjdb | boeck2020/dar | davies2009/mirex_qm_tempotracker | echonest/version_3_2_1 | gkiokas2012/default | klapuri2006/percival2014 | oliveira2010/ibt | percival2014/stem | scheirer1998/percival2014 | schreiber2014/default | schreiber2017/ismir2017 | schreiber2017/mirex2017 | schreiber2018/cnn | schreiber2018/fcn | schreiber2018/ismir2018 | sun2021/default | zplane/auftakt_v3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
boeck2015/tempodetector2016_default | 1.0000 | 0.0000 | 0.0000 | 0.0176 | 0.0000 | 0.0885 | 0.5458 | 0.8855 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.4795 | 0.1613 | 0.0898 | 0.0003 | 0.2101 |
boeck2019/multi_task | 0.0000 | 1.0000 | 0.5758 | 0.0000 | 0.0000 | 0.0000 | 0.0008 | 0.0000 | 0.0000 | 0.4249 | 0.0000 | 0.7431 | 0.3845 | 0.0000 | 0.0005 | 0.0045 | 0.0000 | 0.0000 | 0.0000 |
boeck2019/multi_task_hjdb | 0.0000 | 0.5758 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0003 | 0.0000 | 0.0000 | 0.6642 | 0.0000 | 0.9370 | 0.6464 | 0.0000 | 0.0003 | 0.0020 | 0.0000 | 0.0000 | 0.0000 |
boeck2020/dar | 0.0176 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.9490 | 0.0178 | 0.0934 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0037 | 0.0005 | 0.5650 | 0.1883 | 0.5177 |
davies2009/mirex_qm_tempotracker | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.4595 | 0.0000 | 0.0518 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
echonest/version_3_2_1 | 0.0885 | 0.0000 | 0.0000 | 0.9490 | 0.0000 | 1.0000 | 0.0145 | 0.0935 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0184 | 0.0025 | 0.7372 | 0.2623 | 0.5836 |
gkiokas2012/default | 0.5458 | 0.0008 | 0.0003 | 0.0178 | 0.0000 | 0.0145 | 1.0000 | 0.4109 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.9470 | 0.5422 | 0.0465 | 0.0005 | 0.0700 |
klapuri2006/percival2014 | 0.8855 | 0.0000 | 0.0000 | 0.0934 | 0.0000 | 0.0935 | 0.4109 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.3950 | 0.1170 | 0.1537 | 0.0041 | 0.2248 |
oliveira2010/ibt | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.4595 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0165 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0003 | 0.0000 |
percival2014/stem | 0.0000 | 0.4249 | 0.6642 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.6029 | 0.9362 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 |
scheirer1998/percival2014 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0518 | 0.0000 | 0.0000 | 0.0000 | 0.0165 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2014/default | 0.0000 | 0.7431 | 0.9370 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.6029 | 0.0000 | 1.0000 | 0.5505 | 0.0000 | 0.0001 | 0.0006 | 0.0000 | 0.0000 | 0.0000 |
schreiber2017/ismir2017 | 0.0000 | 0.3845 | 0.6464 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.9362 | 0.0000 | 0.5505 | 1.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 |
schreiber2017/mirex2017 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2018/cnn | 0.4795 | 0.0005 | 0.0003 | 0.0037 | 0.0000 | 0.0184 | 0.9470 | 0.3950 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 1.0000 | 0.4564 | 0.0109 | 0.0000 | 0.0575 |
schreiber2018/fcn | 0.1613 | 0.0045 | 0.0020 | 0.0005 | 0.0000 | 0.0025 | 0.5422 | 0.1170 | 0.0000 | 0.0001 | 0.0000 | 0.0006 | 0.0001 | 0.0000 | 0.4564 | 1.0000 | 0.0014 | 0.0000 | 0.0107 |
schreiber2018/ismir2018 | 0.0898 | 0.0000 | 0.0000 | 0.5650 | 0.0000 | 0.7372 | 0.0465 | 0.1537 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0109 | 0.0014 | 1.0000 | 0.0486 | 0.8784 |
sun2021/default | 0.0003 | 0.0000 | 0.0000 | 0.1883 | 0.0000 | 0.2623 | 0.0005 | 0.0041 | 0.0003 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0486 | 1.0000 | 0.0694 |
zplane/auftakt_v3 | 0.2101 | 0.0000 | 0.0000 | 0.5177 | 0.0000 | 0.5836 | 0.0700 | 0.2248 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0575 | 0.0107 | 0.8784 | 0.0694 | 1.0000 |
Table 9: McNemar p-values, using reference annotations 2.0 as groundtruth with Accuracy1 [Gouyon2006]. H0: both estimators disagree with the groundtruth to the same amount. If p<=ɑ, reject H0, i.e. we have a significant difference in the disagreement with the groundtruth. In the table, p-values<0.05 are set in bold.
Estimator | boeck2015/tempodetector2016_default | boeck2019/multi_task | boeck2019/multi_task_hjdb | boeck2020/dar | davies2009/mirex_qm_tempotracker | echonest/version_3_2_1 | gkiokas2012/default | klapuri2006/percival2014 | oliveira2010/ibt | percival2014/stem | scheirer1998/percival2014 | schreiber2014/default | schreiber2017/ismir2017 | schreiber2017/mirex2017 | schreiber2018/cnn | schreiber2018/fcn | schreiber2018/ismir2018 | sun2021/default | zplane/auftakt_v3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
boeck2015/tempodetector2016_default | 1.0000 | 0.0000 | 0.0000 | 0.0403 | 0.0000 | 0.1442 | 0.4153 | 0.8843 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.5258 | 0.1020 | 0.1213 | 0.0006 | 0.3352 |
boeck2019/multi_task | 0.0000 | 1.0000 | 0.2624 | 0.0000 | 0.0000 | 0.0000 | 0.0003 | 0.0000 | 0.0000 | 0.6097 | 0.0000 | 1.0000 | 0.7448 | 0.0000 | 0.0001 | 0.0021 | 0.0000 | 0.0000 | 0.0000 |
boeck2019/multi_task_hjdb | 0.0000 | 0.2624 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.4683 | 0.8148 | 0.0000 | 0.0000 | 0.0004 | 0.0000 | 0.0000 | 0.0000 |
boeck2020/dar | 0.0403 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.9487 | 0.0198 | 0.1568 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0100 | 0.0007 | 0.6790 | 0.1360 | 0.5160 |
davies2009/mirex_qm_tempotracker | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2234 | 0.0000 | 0.0937 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
echonest/version_3_2_1 | 0.1442 | 0.0000 | 0.0000 | 0.9487 | 0.0000 | 1.0000 | 0.0157 | 0.1636 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0383 | 0.0029 | 0.8397 | 0.2063 | 0.5818 |
gkiokas2012/default | 0.4153 | 0.0003 | 0.0000 | 0.0198 | 0.0000 | 0.0157 | 1.0000 | 0.2960 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.8397 | 0.5365 | 0.0358 | 0.0003 | 0.0789 |
klapuri2006/percival2014 | 0.8843 | 0.0000 | 0.0000 | 0.1568 | 0.0000 | 0.1636 | 0.2960 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.4224 | 0.0727 | 0.2016 | 0.0058 | 0.3823 |
oliveira2010/ibt | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2234 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0155 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0006 | 0.0000 |
percival2014/stem | 0.0000 | 0.6097 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.4778 | 0.8699 | 0.0000 | 0.0000 | 0.0002 | 0.0000 | 0.0000 | 0.0000 |
scheirer1998/percival2014 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0937 | 0.0000 | 0.0000 | 0.0000 | 0.0155 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2014/default | 0.0000 | 1.0000 | 0.4683 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.4778 | 0.0000 | 1.0000 | 0.6135 | 0.0000 | 0.0000 | 0.0012 | 0.0000 | 0.0000 | 0.0000 |
schreiber2017/ismir2017 | 0.0000 | 0.7448 | 0.8148 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.8699 | 0.0000 | 0.6135 | 1.0000 | 0.0000 | 0.0000 | 0.0002 | 0.0000 | 0.0000 | 0.0000 |
schreiber2017/mirex2017 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2018/cnn | 0.5258 | 0.0001 | 0.0000 | 0.0100 | 0.0000 | 0.0383 | 0.8397 | 0.4224 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.2685 | 0.0188 | 0.0000 | 0.1133 |
schreiber2018/fcn | 0.1020 | 0.0021 | 0.0004 | 0.0007 | 0.0000 | 0.0029 | 0.5365 | 0.0727 | 0.0000 | 0.0002 | 0.0000 | 0.0012 | 0.0002 | 0.0000 | 0.2685 | 1.0000 | 0.0010 | 0.0000 | 0.0119 |
schreiber2018/ismir2018 | 0.1213 | 0.0000 | 0.0000 | 0.6790 | 0.0000 | 0.8397 | 0.0358 | 0.2016 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0188 | 0.0010 | 1.0000 | 0.0469 | 0.7555 |
sun2021/default | 0.0006 | 0.0000 | 0.0000 | 0.1360 | 0.0000 | 0.2063 | 0.0003 | 0.0058 | 0.0006 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0469 | 1.0000 | 0.0483 |
zplane/auftakt_v3 | 0.3352 | 0.0000 | 0.0000 | 0.5160 | 0.0000 | 0.5818 | 0.0789 | 0.3823 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1133 | 0.0119 | 0.7555 | 0.0483 | 1.0000 |
Table 10: McNemar p-values, using reference annotations 1.0 as groundtruth with Accuracy1 [Gouyon2006]. H0: both estimators disagree with the groundtruth to the same amount. If p<=ɑ, reject H0, i.e. we have a significant difference in the disagreement with the groundtruth. In the table, p-values<0.05 are set in bold.
Estimator | boeck2015/tempodetector2016_default | boeck2019/multi_task | boeck2019/multi_task_hjdb | boeck2020/dar | davies2009/mirex_qm_tempotracker | echonest/version_3_2_1 | gkiokas2012/default | klapuri2006/percival2014 | oliveira2010/ibt | percival2014/stem | scheirer1998/percival2014 | schreiber2014/default | schreiber2017/ismir2017 | schreiber2017/mirex2017 | schreiber2018/cnn | schreiber2018/fcn | schreiber2018/ismir2018 | sun2021/default | zplane/auftakt_v3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
boeck2015/tempodetector2016_default | 1.0000 | 0.3771 | 0.2005 | 0.3833 | 0.0000 | 0.0000 | 0.0005 | 0.0004 | 0.0000 | 0.0436 | 0.0000 | 0.0038 | 0.0038 | 0.3817 | 0.1628 | 0.6177 | 0.0005 | 0.0006 | 0.0000 |
boeck2019/multi_task | 0.3771 | 1.0000 | 0.6250 | 0.0347 | 0.0001 | 0.0000 | 0.0175 | 0.0076 | 0.0000 | 0.3123 | 0.0000 | 0.0400 | 0.0363 | 1.0000 | 0.7608 | 0.8746 | 0.0222 | 0.0186 | 0.0000 |
boeck2019/multi_task_hjdb | 0.2005 | 0.6250 | 1.0000 | 0.0146 | 0.0002 | 0.0000 | 0.0328 | 0.0139 | 0.0000 | 0.4709 | 0.0000 | 0.0725 | 0.0627 | 1.0000 | 1.0000 | 0.6271 | 0.0402 | 0.0400 | 0.0000 |
boeck2020/dar | 0.3833 | 0.0347 | 0.0146 | 1.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0066 | 0.0000 | 0.0002 | 0.0001 | 0.0884 | 0.0336 | 0.1628 | 0.0000 | 0.0000 | 0.0000 |
davies2009/mirex_qm_tempotracker | 0.0000 | 0.0001 | 0.0002 | 0.0000 | 1.0000 | 0.0001 | 0.0605 | 0.1659 | 0.0001 | 0.0008 | 0.0000 | 0.0320 | 0.0482 | 0.0000 | 0.0001 | 0.0000 | 0.0451 | 0.0429 | 0.0124 |
echonest/version_3_2_1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 1.0000 | 0.0000 | 0.0000 | 0.9279 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1288 |
gkiokas2012/default | 0.0005 | 0.0175 | 0.0328 | 0.0001 | 0.0605 | 0.0000 | 1.0000 | 0.6350 | 0.0000 | 0.2288 | 0.0000 | 0.7946 | 1.0000 | 0.0331 | 0.0581 | 0.0078 | 0.9005 | 1.0000 | 0.0000 |
klapuri2006/percival2014 | 0.0004 | 0.0076 | 0.0139 | 0.0000 | 0.1659 | 0.0000 | 0.6350 | 1.0000 | 0.0000 | 0.0722 | 0.0000 | 0.3816 | 0.5557 | 0.0103 | 0.0135 | 0.0010 | 0.6143 | 0.5383 | 0.0000 |
oliveira2010/ibt | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.9279 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1719 |
percival2014/stem | 0.0436 | 0.3123 | 0.4709 | 0.0066 | 0.0008 | 0.0000 | 0.2288 | 0.0722 | 0.0000 | 1.0000 | 0.0000 | 0.4101 | 0.2976 | 0.4011 | 0.5224 | 0.2026 | 0.2116 | 0.2806 | 0.0000 |
scheirer1998/percival2014 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2014/default | 0.0038 | 0.0400 | 0.0725 | 0.0002 | 0.0320 | 0.0000 | 0.7946 | 0.3816 | 0.0000 | 0.4101 | 0.0000 | 1.0000 | 0.8642 | 0.0488 | 0.1114 | 0.0331 | 0.7838 | 0.8877 | 0.0000 |
schreiber2017/ismir2017 | 0.0038 | 0.0363 | 0.0627 | 0.0001 | 0.0482 | 0.0000 | 1.0000 | 0.5557 | 0.0000 | 0.2976 | 0.0000 | 0.8642 | 1.0000 | 0.0009 | 0.0488 | 0.0127 | 1.0000 | 0.8973 | 0.0000 |
schreiber2017/mirex2017 | 0.3817 | 1.0000 | 1.0000 | 0.0884 | 0.0000 | 0.0000 | 0.0331 | 0.0103 | 0.0000 | 0.4011 | 0.0000 | 0.0488 | 0.0009 | 1.0000 | 0.8714 | 0.7660 | 0.0241 | 0.0440 | 0.0000 |
schreiber2018/cnn | 0.1628 | 0.7608 | 1.0000 | 0.0336 | 0.0001 | 0.0000 | 0.0581 | 0.0135 | 0.0000 | 0.5224 | 0.0000 | 0.1114 | 0.0488 | 0.8714 | 1.0000 | 0.4869 | 0.0167 | 0.0541 | 0.0000 |
schreiber2018/fcn | 0.6177 | 0.8746 | 0.6271 | 0.1628 | 0.0000 | 0.0000 | 0.0078 | 0.0010 | 0.0000 | 0.2026 | 0.0000 | 0.0331 | 0.0127 | 0.7660 | 0.4869 | 1.0000 | 0.0037 | 0.0094 | 0.0000 |
schreiber2018/ismir2018 | 0.0005 | 0.0222 | 0.0402 | 0.0000 | 0.0451 | 0.0000 | 0.9005 | 0.6143 | 0.0000 | 0.2116 | 0.0000 | 0.7838 | 1.0000 | 0.0241 | 0.0167 | 0.0037 | 1.0000 | 1.0000 | 0.0000 |
sun2021/default | 0.0006 | 0.0186 | 0.0400 | 0.0000 | 0.0429 | 0.0000 | 1.0000 | 0.5383 | 0.0000 | 0.2806 | 0.0000 | 0.8877 | 0.8973 | 0.0440 | 0.0541 | 0.0094 | 1.0000 | 1.0000 | 0.0000 |
zplane/auftakt_v3 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0124 | 0.1288 | 0.0000 | 0.0000 | 0.1719 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 |
Table 11: McNemar p-values, using reference annotations GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI as groundtruth with Accuracy2 [Gouyon2006]. H0: both estimators disagree with the groundtruth to the same amount. If p<=ɑ, reject H0, i.e. we have a significant difference in the disagreement with the groundtruth. In the table, p-values<0.05 are set in bold.
Estimator | boeck2015/tempodetector2016_default | boeck2019/multi_task | boeck2019/multi_task_hjdb | boeck2020/dar | davies2009/mirex_qm_tempotracker | echonest/version_3_2_1 | gkiokas2012/default | klapuri2006/percival2014 | oliveira2010/ibt | percival2014/stem | scheirer1998/percival2014 | schreiber2014/default | schreiber2017/ismir2017 | schreiber2017/mirex2017 | schreiber2018/cnn | schreiber2018/fcn | schreiber2018/ismir2018 | sun2021/default | zplane/auftakt_v3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
boeck2015/tempodetector2016_default | 1.0000 | 0.7201 | 0.5847 | 0.2379 | 0.0001 | 0.0000 | 0.0037 | 0.0005 | 0.0000 | 0.1081 | 0.0000 | 0.0045 | 0.0119 | 0.6655 | 0.3915 | 0.6076 | 0.0019 | 0.0002 | 0.0000 |
boeck2019/multi_task | 0.7201 | 1.0000 | 1.0000 | 0.0931 | 0.0005 | 0.0000 | 0.0241 | 0.0031 | 0.0000 | 0.3123 | 0.0000 | 0.0186 | 0.0363 | 1.0000 | 0.7552 | 1.0000 | 0.0198 | 0.0021 | 0.0000 |
boeck2019/multi_task_hjdb | 0.5847 | 1.0000 | 1.0000 | 0.0639 | 0.0009 | 0.0000 | 0.0328 | 0.0043 | 0.0000 | 0.3916 | 0.0000 | 0.0259 | 0.0479 | 1.0000 | 0.8776 | 1.0000 | 0.0270 | 0.0038 | 0.0000 |
boeck2020/dar | 0.2379 | 0.0931 | 0.0639 | 1.0000 | 0.0000 | 0.0000 | 0.0004 | 0.0000 | 0.0000 | 0.0137 | 0.0000 | 0.0002 | 0.0004 | 0.1742 | 0.0652 | 0.1102 | 0.0000 | 0.0000 | 0.0000 |
davies2009/mirex_qm_tempotracker | 0.0001 | 0.0005 | 0.0009 | 0.0000 | 1.0000 | 0.0000 | 0.1410 | 0.5557 | 0.0000 | 0.0052 | 0.0000 | 0.1511 | 0.1461 | 0.0004 | 0.0008 | 0.0004 | 0.1544 | 0.3619 | 0.0045 |
echonest/version_3_2_1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.8557 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1564 |
gkiokas2012/default | 0.0037 | 0.0241 | 0.0328 | 0.0004 | 0.1410 | 0.0000 | 1.0000 | 0.4158 | 0.0000 | 0.2717 | 0.0000 | 0.8937 | 0.9020 | 0.0479 | 0.0759 | 0.0328 | 1.0000 | 0.6198 | 0.0000 |
klapuri2006/percival2014 | 0.0005 | 0.0031 | 0.0043 | 0.0000 | 0.5557 | 0.0000 | 0.4158 | 1.0000 | 0.0000 | 0.0363 | 0.0000 | 0.3581 | 0.4028 | 0.0043 | 0.0054 | 0.0015 | 0.4424 | 0.8041 | 0.0001 |
oliveira2010/ibt | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.8557 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2370 |
percival2014/stem | 0.1081 | 0.3123 | 0.3916 | 0.0137 | 0.0052 | 0.0000 | 0.2717 | 0.0363 | 0.0000 | 1.0000 | 0.0000 | 0.2624 | 0.2976 | 0.4011 | 0.5224 | 0.3916 | 0.2026 | 0.0869 | 0.0000 |
scheirer1998/percival2014 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2014/default | 0.0045 | 0.0186 | 0.0259 | 0.0002 | 0.1511 | 0.0000 | 0.8937 | 0.3581 | 0.0000 | 0.2624 | 0.0000 | 1.0000 | 1.0000 | 0.0166 | 0.0488 | 0.0328 | 1.0000 | 0.5901 | 0.0000 |
schreiber2017/ismir2017 | 0.0119 | 0.0363 | 0.0479 | 0.0004 | 0.1461 | 0.0000 | 0.9020 | 0.4028 | 0.0000 | 0.2976 | 0.0000 | 1.0000 | 1.0000 | 0.0009 | 0.0436 | 0.0328 | 1.0000 | 0.6085 | 0.0000 |
schreiber2017/mirex2017 | 0.6655 | 1.0000 | 1.0000 | 0.1742 | 0.0004 | 0.0000 | 0.0479 | 0.0043 | 0.0000 | 0.4011 | 0.0000 | 0.0166 | 0.0009 | 1.0000 | 0.8679 | 1.0000 | 0.0241 | 0.0086 | 0.0000 |
schreiber2018/cnn | 0.3915 | 0.7552 | 0.8776 | 0.0652 | 0.0008 | 0.0000 | 0.0759 | 0.0054 | 0.0000 | 0.5224 | 0.0000 | 0.0488 | 0.0436 | 0.8679 | 1.0000 | 0.8601 | 0.0135 | 0.0094 | 0.0000 |
schreiber2018/fcn | 0.6076 | 1.0000 | 1.0000 | 0.1102 | 0.0004 | 0.0000 | 0.0328 | 0.0015 | 0.0000 | 0.3916 | 0.0000 | 0.0328 | 0.0328 | 1.0000 | 0.8601 | 1.0000 | 0.0161 | 0.0031 | 0.0000 |
schreiber2018/ismir2018 | 0.0019 | 0.0198 | 0.0270 | 0.0000 | 0.1544 | 0.0000 | 1.0000 | 0.4424 | 0.0000 | 0.2026 | 0.0000 | 1.0000 | 1.0000 | 0.0241 | 0.0135 | 0.0161 | 1.0000 | 0.6655 | 0.0000 |
sun2021/default | 0.0002 | 0.0021 | 0.0038 | 0.0000 | 0.3619 | 0.0000 | 0.6198 | 0.8041 | 0.0000 | 0.0869 | 0.0000 | 0.5901 | 0.6085 | 0.0086 | 0.0094 | 0.0031 | 0.6655 | 1.0000 | 0.0000 |
zplane/auftakt_v3 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0045 | 0.1564 | 0.0000 | 0.0001 | 0.2370 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 |
Table 12: McNemar p-values, using reference annotations GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI as groundtruth with Accuracy2 [Gouyon2006]. H0: both estimators disagree with the groundtruth to the same amount. If p<=ɑ, reject H0, i.e. we have a significant difference in the disagreement with the groundtruth. In the table, p-values<0.05 are set in bold.
Estimator | boeck2015/tempodetector2016_default | boeck2019/multi_task | boeck2019/multi_task_hjdb | boeck2020/dar | davies2009/mirex_qm_tempotracker | echonest/version_3_2_1 | gkiokas2012/default | klapuri2006/percival2014 | oliveira2010/ibt | percival2014/stem | scheirer1998/percival2014 | schreiber2014/default | schreiber2017/ismir2017 | schreiber2017/mirex2017 | schreiber2018/cnn | schreiber2018/fcn | schreiber2018/ismir2018 | sun2021/default | zplane/auftakt_v3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
boeck2015/tempodetector2016_default | 1.0000 | 0.2110 | 0.4296 | 0.0639 | 0.0000 | 0.0000 | 0.0114 | 0.0004 | 0.0000 | 0.0541 | 0.0000 | 0.0026 | 0.0300 | 0.6587 | 0.5515 | 0.0175 | 0.0027 | 0.0000 | 0.0000 |
boeck2019/multi_task | 0.2110 | 1.0000 | 0.4531 | 0.0019 | 0.0000 | 0.0000 | 0.2892 | 0.0160 | 0.0000 | 0.5962 | 0.0000 | 0.0919 | 0.3497 | 0.0984 | 0.6889 | 0.2717 | 0.0980 | 0.0081 | 0.0000 |
boeck2019/multi_task_hjdb | 0.4296 | 0.4531 | 1.0000 | 0.0070 | 0.0000 | 0.0000 | 0.1409 | 0.0052 | 0.0000 | 0.3581 | 0.0000 | 0.0293 | 0.1770 | 0.2116 | 1.0000 | 0.1263 | 0.0363 | 0.0022 | 0.0000 |
boeck2020/dar | 0.0639 | 0.0019 | 0.0070 | 1.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0004 | 0.0000 | 0.0000 | 0.0001 | 0.4408 | 0.0400 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
davies2009/mirex_qm_tempotracker | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0121 | 0.0003 | 0.0153 | 0.0060 | 0.0000 | 0.0000 | 0.0020 | 0.0002 | 0.0000 | 0.0000 | 0.0002 | 0.0017 | 0.0214 | 0.4812 |
echonest/version_3_2_1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0121 | 1.0000 | 0.0000 | 0.0000 | 0.9279 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0532 |
gkiokas2012/default | 0.0114 | 0.2892 | 0.1409 | 0.0001 | 0.0003 | 0.0000 | 1.0000 | 0.1931 | 0.0000 | 0.6936 | 0.0000 | 0.7032 | 1.0000 | 0.0081 | 0.0984 | 0.8937 | 0.6198 | 0.1486 | 0.0000 |
klapuri2006/percival2014 | 0.0004 | 0.0160 | 0.0052 | 0.0000 | 0.0153 | 0.0000 | 0.1931 | 1.0000 | 0.0000 | 0.0363 | 0.0000 | 0.3284 | 0.1255 | 0.0001 | 0.0019 | 0.1299 | 0.3816 | 0.9075 | 0.0007 |
oliveira2010/ibt | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0060 | 0.9279 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0433 |
percival2014/stem | 0.0541 | 0.5962 | 0.3581 | 0.0004 | 0.0000 | 0.0000 | 0.6936 | 0.0363 | 0.0000 | 1.0000 | 0.0000 | 0.3409 | 0.7911 | 0.0198 | 0.2221 | 0.6778 | 0.2806 | 0.0396 | 0.0000 |
scheirer1998/percival2014 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2014/default | 0.0026 | 0.0919 | 0.0293 | 0.0000 | 0.0020 | 0.0000 | 0.7032 | 0.3284 | 0.0000 | 0.3409 | 0.0000 | 1.0000 | 0.4583 | 0.0001 | 0.0213 | 0.6985 | 1.0000 | 0.2976 | 0.0000 |
schreiber2017/ismir2017 | 0.0300 | 0.3497 | 0.1770 | 0.0001 | 0.0002 | 0.0000 | 1.0000 | 0.1255 | 0.0000 | 0.7911 | 0.0000 | 0.4583 | 1.0000 | 0.0000 | 0.1114 | 1.0000 | 0.4799 | 0.1034 | 0.0000 |
schreiber2017/mirex2017 | 0.6587 | 0.0984 | 0.2116 | 0.4408 | 0.0000 | 0.0000 | 0.0081 | 0.0001 | 0.0000 | 0.0198 | 0.0000 | 0.0001 | 0.0000 | 1.0000 | 0.2221 | 0.0026 | 0.0003 | 0.0000 | 0.0000 |
schreiber2018/cnn | 0.5515 | 0.6889 | 1.0000 | 0.0400 | 0.0000 | 0.0000 | 0.0984 | 0.0019 | 0.0000 | 0.2221 | 0.0000 | 0.0213 | 0.1114 | 0.2221 | 1.0000 | 0.0725 | 0.0096 | 0.0005 | 0.0000 |
schreiber2018/fcn | 0.0175 | 0.2717 | 0.1263 | 0.0000 | 0.0002 | 0.0000 | 0.8937 | 0.1299 | 0.0000 | 0.6778 | 0.0000 | 0.6985 | 1.0000 | 0.0026 | 0.0725 | 1.0000 | 0.5831 | 0.1112 | 0.0000 |
schreiber2018/ismir2018 | 0.0027 | 0.0980 | 0.0363 | 0.0000 | 0.0017 | 0.0000 | 0.6198 | 0.3816 | 0.0000 | 0.2806 | 0.0000 | 1.0000 | 0.4799 | 0.0003 | 0.0096 | 0.5831 | 1.0000 | 0.3497 | 0.0000 |
sun2021/default | 0.0000 | 0.0081 | 0.0022 | 0.0000 | 0.0214 | 0.0000 | 0.1486 | 0.9075 | 0.0000 | 0.0396 | 0.0000 | 0.2976 | 0.1034 | 0.0000 | 0.0005 | 0.1112 | 0.3497 | 1.0000 | 0.0007 |
zplane/auftakt_v3 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.4812 | 0.0532 | 0.0000 | 0.0007 | 0.0433 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0007 | 1.0000 |
Table 13: McNemar p-values, using reference annotations 2.0 as groundtruth with Accuracy2 [Gouyon2006]. H0: both estimators disagree with the groundtruth to the same amount. If p<=ɑ, reject H0, i.e. we have a significant difference in the disagreement with the groundtruth. In the table, p-values<0.05 are set in bold.
Estimator | boeck2015/tempodetector2016_default | boeck2019/multi_task | boeck2019/multi_task_hjdb | boeck2020/dar | davies2009/mirex_qm_tempotracker | echonest/version_3_2_1 | gkiokas2012/default | klapuri2006/percival2014 | oliveira2010/ibt | percival2014/stem | scheirer1998/percival2014 | schreiber2014/default | schreiber2017/ismir2017 | schreiber2017/mirex2017 | schreiber2018/cnn | schreiber2018/fcn | schreiber2018/ismir2018 | sun2021/default | zplane/auftakt_v3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
boeck2015/tempodetector2016_default | 1.0000 | 0.2800 | 0.4296 | 0.0639 | 0.0000 | 0.0000 | 0.0016 | 0.0003 | 0.0000 | 0.0595 | 0.0000 | 0.0005 | 0.0198 | 0.8830 | 0.4514 | 0.0534 | 0.0038 | 0.0002 | 0.0000 |
boeck2019/multi_task | 0.2800 | 1.0000 | 0.6875 | 0.0039 | 0.0000 | 0.0000 | 0.0925 | 0.0071 | 0.0000 | 0.5115 | 0.0000 | 0.0213 | 0.2203 | 0.2116 | 0.8937 | 0.4270 | 0.0869 | 0.0111 | 0.0000 |
boeck2019/multi_task_hjdb | 0.4296 | 0.6875 | 1.0000 | 0.0070 | 0.0000 | 0.0000 | 0.0479 | 0.0029 | 0.0000 | 0.3581 | 0.0000 | 0.0079 | 0.1337 | 0.3317 | 0.8937 | 0.2806 | 0.0440 | 0.0044 | 0.0000 |
boeck2020/dar | 0.0639 | 0.0039 | 0.0070 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0005 | 0.0000 | 0.0000 | 0.0000 | 0.2800 | 0.0195 | 0.0002 | 0.0000 | 0.0000 | 0.0000 |
davies2009/mirex_qm_tempotracker | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0184 | 0.0007 | 0.0142 | 0.0265 | 0.0000 | 0.0000 | 0.0034 | 0.0002 | 0.0000 | 0.0000 | 0.0000 | 0.0008 | 0.0104 | 0.5228 |
echonest/version_3_2_1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0184 | 1.0000 | 0.0000 | 0.0000 | 0.7842 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0622 |
gkiokas2012/default | 0.0016 | 0.0925 | 0.0479 | 0.0000 | 0.0007 | 0.0000 | 1.0000 | 0.3019 | 0.0000 | 0.3409 | 0.0000 | 0.7946 | 0.7077 | 0.0032 | 0.0365 | 0.4270 | 0.8937 | 0.4635 | 0.0000 |
klapuri2006/percival2014 | 0.0003 | 0.0071 | 0.0029 | 0.0000 | 0.0142 | 0.0000 | 0.3019 | 1.0000 | 0.0000 | 0.0222 | 0.0000 | 0.4424 | 0.1149 | 0.0001 | 0.0011 | 0.0430 | 0.2370 | 0.8149 | 0.0007 |
oliveira2010/ibt | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0265 | 0.7842 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1219 |
percival2014/stem | 0.0595 | 0.5115 | 0.3581 | 0.0005 | 0.0000 | 0.0000 | 0.3409 | 0.0222 | 0.0000 | 1.0000 | 0.0000 | 0.1608 | 0.6835 | 0.0365 | 0.2800 | 1.0000 | 0.3020 | 0.0722 | 0.0000 |
scheirer1998/percival2014 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2014/default | 0.0005 | 0.0213 | 0.0079 | 0.0000 | 0.0034 | 0.0000 | 0.7946 | 0.4424 | 0.0000 | 0.1608 | 0.0000 | 1.0000 | 0.2649 | 0.0000 | 0.0079 | 0.2288 | 0.7754 | 0.6936 | 0.0000 |
schreiber2017/ismir2017 | 0.0198 | 0.2203 | 0.1337 | 0.0000 | 0.0002 | 0.0000 | 0.7077 | 0.1149 | 0.0000 | 0.6835 | 0.0000 | 0.2649 | 1.0000 | 0.0000 | 0.0961 | 0.7798 | 0.6718 | 0.2000 | 0.0000 |
schreiber2017/mirex2017 | 0.8830 | 0.2116 | 0.3317 | 0.2800 | 0.0000 | 0.0000 | 0.0032 | 0.0001 | 0.0000 | 0.0365 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.2682 | 0.0241 | 0.0015 | 0.0002 | 0.0000 |
schreiber2018/cnn | 0.4514 | 0.8937 | 0.8937 | 0.0195 | 0.0000 | 0.0000 | 0.0365 | 0.0011 | 0.0000 | 0.2800 | 0.0000 | 0.0079 | 0.0961 | 0.2682 | 1.0000 | 0.2110 | 0.0195 | 0.0018 | 0.0000 |
schreiber2018/fcn | 0.0534 | 0.4270 | 0.2806 | 0.0002 | 0.0000 | 0.0000 | 0.4270 | 0.0430 | 0.0000 | 1.0000 | 0.0000 | 0.2288 | 0.7798 | 0.0241 | 0.2110 | 1.0000 | 0.3916 | 0.0759 | 0.0000 |
schreiber2018/ismir2018 | 0.0038 | 0.0869 | 0.0440 | 0.0000 | 0.0008 | 0.0000 | 0.8937 | 0.2370 | 0.0000 | 0.3020 | 0.0000 | 0.7754 | 0.6718 | 0.0015 | 0.0195 | 0.3916 | 1.0000 | 0.4188 | 0.0000 |
sun2021/default | 0.0002 | 0.0111 | 0.0044 | 0.0000 | 0.0104 | 0.0000 | 0.4635 | 0.8149 | 0.0000 | 0.0722 | 0.0000 | 0.6936 | 0.2000 | 0.0002 | 0.0018 | 0.0759 | 0.4188 | 1.0000 | 0.0003 |
zplane/auftakt_v3 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.5228 | 0.0622 | 0.0000 | 0.0007 | 0.1219 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0003 | 1.0000 |
Table 14: McNemar p-values, using reference annotations 1.0 as groundtruth with Accuracy2 [Gouyon2006]. H0: both estimators disagree with the groundtruth to the same amount. If p<=ɑ, reject H0, i.e. we have a significant difference in the disagreement with the groundtruth. In the table, p-values<0.05 are set in bold.
Accuracy1 on cvar-Subsets
How well does an estimator perform, when only taking tracks into account that have a cvar-value of less than τ, i.e., have a more or less stable beat?
Accuracy1 on cvar-Subsets for 1.0 based on cvar-Values from GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28
Figure 14: Mean Accuracy1 compared to version 1.0 for tracks with cvar < τ based on beat annotations from 1.0.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy1 on cvar-Subsets for 2.0 based on cvar-Values from GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28
Figure 15: Mean Accuracy1 compared to version 2.0 for tracks with cvar < τ based on beat annotations from 2.0.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy1 on cvar-Subsets for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI based on cvar-Values from GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28
Figure 16: Mean Accuracy1 compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI for tracks with cvar < τ based on beat annotations from GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy1 on cvar-Subsets for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI based on cvar-Values from GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28
Figure 17: Mean Accuracy1 compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI for tracks with cvar < τ based on beat annotations from GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy2 on cvar-Subsets
How well does an estimator perform, when only taking tracks into account that have a cvar-value of less than τ, i.e., have a more or less stable beat?
Accuracy2 on cvar-Subsets for 1.0 based on cvar-Values from GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28
Figure 18: Mean Accuracy2 compared to version 1.0 for tracks with cvar < τ based on beat annotations from 1.0.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy2 on cvar-Subsets for 2.0 based on cvar-Values from GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28
Figure 19: Mean Accuracy2 compared to version 2.0 for tracks with cvar < τ based on beat annotations from 2.0.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy2 on cvar-Subsets for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI based on cvar-Values from GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28
Figure 20: Mean Accuracy2 compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI for tracks with cvar < τ based on beat annotations from GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy2 on cvar-Subsets for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI based on cvar-Values from GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28
Figure 21: Mean Accuracy2 compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI for tracks with cvar < τ based on beat annotations from GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy1 on Tempo-Subsets
How well does an estimator perform, when only taking a subset of the reference annotations into account? The graphs show mean Accuracy1 for reference subsets with tempi in [T-10,T+10] BPM. Note that the graphs do not show confidence intervals and that some values may be based on very few estimates.
Accuracy1 on Tempo-Subsets for 1.0
Figure 22: Mean Accuracy1 for estimates compared to version 1.0 for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy1 on Tempo-Subsets for 2.0
Figure 23: Mean Accuracy1 for estimates compared to version 2.0 for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy1 on Tempo-Subsets for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI
Figure 24: Mean Accuracy1 for estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy1 on Tempo-Subsets for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI
Figure 25: Mean Accuracy1 for estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy2 on Tempo-Subsets
How well does an estimator perform, when only taking a subset of the reference annotations into account? The graphs show mean Accuracy2 for reference subsets with tempi in [T-10,T+10] BPM. Note that the graphs do not show confidence intervals and that some values may be based on very few estimates.
Accuracy2 on Tempo-Subsets for 1.0
Figure 26: Mean Accuracy2 for estimates compared to version 1.0 for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy2 on Tempo-Subsets for 2.0
Figure 27: Mean Accuracy2 for estimates compared to version 2.0 for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy2 on Tempo-Subsets for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI
Figure 28: Mean Accuracy2 for estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy2 on Tempo-Subsets for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI
Figure 29: Mean Accuracy2 for estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated Accuracy1 for Tempo
When fitting a generalized additive model (GAM) to Accuracy1-values and a ground truth, what Accuracy1 can we expect with confidence?
Estimated Accuracy1 for Tempo for 1.0
Predictions of GAMs trained on Accuracy1 for estimates for reference 1.0.
Figure 30: Accuracy1 predictions of a generalized additive model (GAM) fit to Accuracy1 results for 1.0. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated Accuracy1 for Tempo for 2.0
Predictions of GAMs trained on Accuracy1 for estimates for reference 2.0.
Figure 31: Accuracy1 predictions of a generalized additive model (GAM) fit to Accuracy1 results for 2.0. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated Accuracy1 for Tempo for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI
Predictions of GAMs trained on Accuracy1 for estimates for reference GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI.
Figure 32: Accuracy1 predictions of a generalized additive model (GAM) fit to Accuracy1 results for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated Accuracy1 for Tempo for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI
Predictions of GAMs trained on Accuracy1 for estimates for reference GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI.
Figure 33: Accuracy1 predictions of a generalized additive model (GAM) fit to Accuracy1 results for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated Accuracy2 for Tempo
When fitting a generalized additive model (GAM) to Accuracy2-values and a ground truth, what Accuracy2 can we expect with confidence?
Estimated Accuracy2 for Tempo for 1.0
Predictions of GAMs trained on Accuracy2 for estimates for reference 1.0.
Figure 34: Accuracy2 predictions of a generalized additive model (GAM) fit to Accuracy2 results for 1.0. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated Accuracy2 for Tempo for 2.0
Predictions of GAMs trained on Accuracy2 for estimates for reference 2.0.
Figure 35: Accuracy2 predictions of a generalized additive model (GAM) fit to Accuracy2 results for 2.0. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated Accuracy2 for Tempo for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI
Predictions of GAMs trained on Accuracy2 for estimates for reference GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI.
Figure 36: Accuracy2 predictions of a generalized additive model (GAM) fit to Accuracy2 results for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated Accuracy2 for Tempo for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI
Predictions of GAMs trained on Accuracy2 for estimates for reference GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI.
Figure 37: Accuracy2 predictions of a generalized additive model (GAM) fit to Accuracy2 results for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy1 for ‘tag_open’ Tags
How well does an estimator perform, when only taking tracks into account that are tagged with some kind of label? Note that some values may be based on very few estimates.
Accuracy1 for ‘tag_open’ Tags for 1.0
Figure 38: Mean Accuracy1 of estimates compared to version 1.0 depending on tag from namespace ‘tag_open’.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy1 for ‘tag_open’ Tags for 2.0
Figure 39: Mean Accuracy1 of estimates compared to version 2.0 depending on tag from namespace ‘tag_open’.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy1 for ‘tag_open’ Tags for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI
Figure 40: Mean Accuracy1 of estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI depending on tag from namespace ‘tag_open’.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy1 for ‘tag_open’ Tags for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI
Figure 41: Mean Accuracy1 of estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI depending on tag from namespace ‘tag_open’.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy1 for ‘tag_gtzan’ Tags
How well does an estimator perform, when only taking tracks into account that are tagged with some kind of label? Note that some values may be based on very few estimates.
Accuracy1 for ‘tag_gtzan’ Tags for 1.0
Figure 42: Mean Accuracy1 of estimates compared to version 1.0 depending on tag from namespace ‘tag_gtzan’.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy1 for ‘tag_gtzan’ Tags for 2.0
Figure 43: Mean Accuracy1 of estimates compared to version 2.0 depending on tag from namespace ‘tag_gtzan’.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy1 for ‘tag_gtzan’ Tags for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI
Figure 44: Mean Accuracy1 of estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI depending on tag from namespace ‘tag_gtzan’.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy1 for ‘tag_gtzan’ Tags for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI
Figure 45: Mean Accuracy1 of estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI depending on tag from namespace ‘tag_gtzan’.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy2 for ‘tag_open’ Tags
How well does an estimator perform, when only taking tracks into account that are tagged with some kind of label? Note that some values may be based on very few estimates.
Accuracy2 for ‘tag_open’ Tags for 1.0
Figure 46: Mean Accuracy2 of estimates compared to version 1.0 depending on tag from namespace ‘tag_open’.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy2 for ‘tag_open’ Tags for 2.0
Figure 47: Mean Accuracy2 of estimates compared to version 2.0 depending on tag from namespace ‘tag_open’.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy2 for ‘tag_open’ Tags for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI
Figure 48: Mean Accuracy2 of estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI depending on tag from namespace ‘tag_open’.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy2 for ‘tag_open’ Tags for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI
Figure 49: Mean Accuracy2 of estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI depending on tag from namespace ‘tag_open’.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy2 for ‘tag_gtzan’ Tags
How well does an estimator perform, when only taking tracks into account that are tagged with some kind of label? Note that some values may be based on very few estimates.
Accuracy2 for ‘tag_gtzan’ Tags for 1.0
Figure 50: Mean Accuracy2 of estimates compared to version 1.0 depending on tag from namespace ‘tag_gtzan’.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy2 for ‘tag_gtzan’ Tags for 2.0
Figure 51: Mean Accuracy2 of estimates compared to version 2.0 depending on tag from namespace ‘tag_gtzan’.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy2 for ‘tag_gtzan’ Tags for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI
Figure 52: Mean Accuracy2 of estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI depending on tag from namespace ‘tag_gtzan’.
CSV JSON LATEX PICKLE SVG PDF PNG
Accuracy2 for ‘tag_gtzan’ Tags for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI
Figure 53: Mean Accuracy2 of estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI depending on tag from namespace ‘tag_gtzan’.
CSV JSON LATEX PICKLE SVG PDF PNG
OE1 and OE2
OE1 is defined as octave error between an estimate E
and a reference value R
.This means that the most common errors—by a factor of 2 or ½—have the same magnitude, namely 1: OE2(E) = log2(E/R)
.
OE2 is the signed OE1 corresponding to the minimum absolute OE1 allowing the octaveerrors 2, 3, 1/2, and 1/3: OE2(E) = arg minx(|x|) with x ∈ {OE1(E), OE1(2E), OE1(3E), OE1(½E), OE1(⅓E)}
Mean OE1/OE2 Results for 1.0
Estimator | OE1_MEAN | OE1_STDEV | OE2_MEAN | OE2_STDEV |
---|---|---|---|---|
schreiber2017/mirex2017 | 0.0590 | 0.3069 | -0.0021 | 0.0487 |
schreiber2017/ismir2017 | 0.1440 | 0.4068 | -0.0048 | 0.0797 |
percival2014/stem | 0.1399 | 0.4119 | -0.0008 | 0.0728 |
schreiber2014/default | 0.1258 | 0.4130 | -0.0107 | 0.0895 |
boeck2019/multi_task | 0.0764 | 0.4306 | -0.0013 | 0.0713 |
boeck2019/multi_task_hjdb | 0.0522 | 0.4308 | -0.0023 | 0.0712 |
schreiber2018/fcn | 0.2068 | 0.4507 | -0.0047 | 0.0698 |
schreiber2018/cnn | 0.2473 | 0.4514 | -0.0043 | 0.0741 |
echonest/version_3_2_1 | 0.1468 | 0.4524 | -0.0091 | 0.1115 |
klapuri2006/percival2014 | 0.2610 | 0.4597 | -0.0076 | 0.0840 |
schreiber2018/ismir2018 | 0.2691 | 0.4657 | -0.0050 | 0.0900 |
sun2021/default | 0.2753 | 0.4667 | -0.0115 | 0.0828 |
zplane/auftakt_v3 | 0.2372 | 0.4738 | -0.0119 | 0.1109 |
boeck2020/dar | 0.2857 | 0.4770 | 0.0004 | 0.0589 |
oliveira2010/ibt | 0.3338 | 0.4843 | -0.0121 | 0.1021 |
gkiokas2012/default | 0.1870 | 0.4878 | -0.0032 | 0.0863 |
boeck2015/tempodetector2016_default | 0.2759 | 0.4898 | 0.0006 | 0.0684 |
davies2009/mirex_qm_tempotracker | 0.3979 | 0.5083 | 0.0173 | 0.0769 |
scheirer1998/percival2014 | 0.1383 | 0.5280 | 0.0207 | 0.1605 |
Table 15: Mean OE1/OE2 for estimates compared to version 1.0 ordered by standard deviation.
Raw data OE1: CSV JSON LATEX PICKLE
Raw data OE2: CSV JSON LATEX PICKLE
OE1 distribution for 1.0
Figure 54: OE1 for estimates compared to version 1.0. Shown are the mean OE1 and an empirical distribution of the sample, using kernel density estimation (KDE).
CSV JSON LATEX PICKLE SVG PDF PNG
OE2 distribution for 1.0
Figure 55: OE2 for estimates compared to version 1.0. Shown are the mean OE2 and an empirical distribution of the sample, using kernel density estimation (KDE).
CSV JSON LATEX PICKLE SVG PDF PNG
Mean OE1/OE2 Results for 2.0
Estimator | OE1_MEAN | OE1_STDEV | OE2_MEAN | OE2_STDEV |
---|---|---|---|---|
schreiber2017/mirex2017 | 0.0472 | 0.3074 | -0.0034 | 0.0434 |
schreiber2017/ismir2017 | 0.1332 | 0.4073 | -0.0067 | 0.0758 |
percival2014/stem | 0.1292 | 0.4110 | 0.0003 | 0.0739 |
schreiber2014/default | 0.1141 | 0.4122 | -0.0126 | 0.0860 |
boeck2019/multi_task | 0.0658 | 0.4364 | -0.0019 | 0.0688 |
boeck2019/multi_task_hjdb | 0.0415 | 0.4407 | -0.0029 | 0.0687 |
schreiber2018/fcn | 0.1951 | 0.4506 | -0.0056 | 0.0699 |
schreiber2018/cnn | 0.2356 | 0.4528 | -0.0041 | 0.0743 |
klapuri2006/percival2014 | 0.2500 | 0.4543 | -0.0077 | 0.0832 |
echonest/version_3_2_1 | 0.1366 | 0.4605 | -0.0095 | 0.1093 |
schreiber2018/ismir2018 | 0.2573 | 0.4676 | -0.0064 | 0.0871 |
zplane/auftakt_v3 | 0.2256 | 0.4685 | -0.0120 | 0.1105 |
sun2021/default | 0.2646 | 0.4694 | -0.0146 | 0.0788 |
oliveira2010/ibt | 0.3223 | 0.4827 | -0.0118 | 0.1023 |
boeck2020/dar | 0.2750 | 0.4832 | -0.0013 | 0.0521 |
boeck2015/tempodetector2016_default | 0.2643 | 0.4878 | -0.0007 | 0.0612 |
gkiokas2012/default | 0.1758 | 0.4884 | -0.0028 | 0.0819 |
davies2009/mirex_qm_tempotracker | 0.3867 | 0.5042 | 0.0169 | 0.0741 |
scheirer1998/percival2014 | 0.1263 | 0.5228 | 0.0241 | 0.1601 |
Table 16: Mean OE1/OE2 for estimates compared to version 2.0 ordered by standard deviation.
Raw data OE1: CSV JSON LATEX PICKLE
Raw data OE2: CSV JSON LATEX PICKLE
OE1 distribution for 2.0
Figure 56: OE1 for estimates compared to version 2.0. Shown are the mean OE1 and an empirical distribution of the sample, using kernel density estimation (KDE).
CSV JSON LATEX PICKLE SVG PDF PNG
OE2 distribution for 2.0
Figure 57: OE2 for estimates compared to version 2.0. Shown are the mean OE2 and an empirical distribution of the sample, using kernel density estimation (KDE).
CSV JSON LATEX PICKLE SVG PDF PNG
Mean OE1/OE2 Results for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI
Estimator | OE1_MEAN | OE1_STDEV | OE2_MEAN | OE2_STDEV |
---|---|---|---|---|
boeck2020/dar | -0.0325 | 0.3644 | 0.0020 | 0.0638 |
sun2021/default | -0.0429 | 0.3940 | -0.0116 | 0.0818 |
schreiber2018/ismir2018 | -0.0497 | 0.4310 | -0.0062 | 0.0918 |
schreiber2018/cnn | -0.0714 | 0.4512 | -0.0016 | 0.0768 |
schreiber2018/fcn | -0.1120 | 0.4611 | 0.0014 | 0.0679 |
boeck2015/tempodetector2016_default | -0.0429 | 0.4656 | 0.0013 | 0.0682 |
boeck2019/multi_task | -0.2418 | 0.4717 | 0.0018 | 0.0739 |
schreiber2017/ismir2017 | -0.1748 | 0.4838 | -0.0024 | 0.0848 |
schreiber2014/default | -0.1929 | 0.4906 | -0.0099 | 0.0838 |
boeck2019/multi_task_hjdb | -0.2660 | 0.4917 | -0.0006 | 0.0751 |
echonest/version_3_2_1 | -0.1713 | 0.5000 | -0.0044 | 0.1110 |
schreiber2017/mirex2017 | -0.2597 | 0.5001 | -0.0010 | 0.0696 |
oliveira2010/ibt | 0.0151 | 0.5025 | -0.0114 | 0.0980 |
klapuri2006/percival2014 | -0.0578 | 0.5081 | -0.0037 | 0.0818 |
percival2014/stem | -0.1788 | 0.5138 | -0.0006 | 0.0732 |
zplane/auftakt_v3 | -0.0816 | 0.5194 | -0.0101 | 0.1099 |
davies2009/mirex_qm_tempotracker | 0.0792 | 0.5219 | 0.0198 | 0.0746 |
gkiokas2012/default | -0.1318 | 0.5595 | -0.0001 | 0.0820 |
scheirer1998/percival2014 | -0.1772 | 0.5888 | 0.0223 | 0.1565 |
Table 17: Mean OE1/OE2 for estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI ordered by standard deviation.
Raw data OE1: CSV JSON LATEX PICKLE
Raw data OE2: CSV JSON LATEX PICKLE
OE1 distribution for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI
Figure 58: OE1 for estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI. Shown are the mean OE1 and an empirical distribution of the sample, using kernel density estimation (KDE).
CSV JSON LATEX PICKLE SVG PDF PNG
OE2 distribution for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI
Figure 59: OE2 for estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI. Shown are the mean OE2 and an empirical distribution of the sample, using kernel density estimation (KDE).
CSV JSON LATEX PICKLE SVG PDF PNG
Mean OE1/OE2 Results for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI
Estimator | OE1_MEAN | OE1_STDEV | OE2_MEAN | OE2_STDEV |
---|---|---|---|---|
boeck2020/dar | -0.0320 | 0.3641 | 0.0036 | 0.0649 |
sun2021/default | -0.0423 | 0.3939 | -0.0111 | 0.0812 |
schreiber2018/ismir2018 | -0.0491 | 0.4310 | -0.0057 | 0.0923 |
schreiber2018/cnn | -0.0709 | 0.4514 | -0.0020 | 0.0768 |
schreiber2018/fcn | -0.1115 | 0.4610 | 0.0020 | 0.0687 |
boeck2015/tempodetector2016_default | -0.0423 | 0.4660 | 0.0018 | 0.0688 |
boeck2019/multi_task | -0.2412 | 0.4712 | 0.0024 | 0.0748 |
schreiber2017/ismir2017 | -0.1743 | 0.4837 | -0.0018 | 0.0852 |
schreiber2014/default | -0.1924 | 0.4904 | -0.0084 | 0.0833 |
boeck2019/multi_task_hjdb | -0.2654 | 0.4913 | -0.0001 | 0.0762 |
echonest/version_3_2_1 | -0.1707 | 0.4999 | -0.0038 | 0.1113 |
schreiber2017/mirex2017 | -0.2592 | 0.5000 | -0.0004 | 0.0701 |
oliveira2010/ibt | 0.0156 | 0.5026 | -0.0103 | 0.0972 |
klapuri2006/percival2014 | -0.0572 | 0.5082 | -0.0042 | 0.0818 |
percival2014/stem | -0.1783 | 0.5137 | -0.0001 | 0.0733 |
zplane/auftakt_v3 | -0.0810 | 0.5192 | -0.0089 | 0.1099 |
davies2009/mirex_qm_tempotracker | 0.0797 | 0.5222 | 0.0194 | 0.0742 |
gkiokas2012/default | -0.1313 | 0.5600 | 0.0010 | 0.0821 |
scheirer1998/percival2014 | -0.1766 | 0.5890 | 0.0228 | 0.1566 |
Table 18: Mean OE1/OE2 for estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI ordered by standard deviation.
Raw data OE1: CSV JSON LATEX PICKLE
Raw data OE2: CSV JSON LATEX PICKLE
OE1 distribution for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI
Figure 60: OE1 for estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI. Shown are the mean OE1 and an empirical distribution of the sample, using kernel density estimation (KDE).
CSV JSON LATEX PICKLE SVG PDF PNG
OE2 distribution for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI
Figure 61: OE2 for estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI. Shown are the mean OE2 and an empirical distribution of the sample, using kernel density estimation (KDE).
CSV JSON LATEX PICKLE SVG PDF PNG
Significance of Differences
Estimator | boeck2015/tempodetector2016_default | boeck2019/multi_task | boeck2019/multi_task_hjdb | boeck2020/dar | davies2009/mirex_qm_tempotracker | echonest/version_3_2_1 | gkiokas2012/default | klapuri2006/percival2014 | oliveira2010/ibt | percival2014/stem | scheirer1998/percival2014 | schreiber2014/default | schreiber2017/ismir2017 | schreiber2017/mirex2017 | schreiber2018/cnn | schreiber2018/fcn | schreiber2018/ismir2018 | sun2021/default | zplane/auftakt_v3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
boeck2015/tempodetector2016_default | 1.0000 | 0.0000 | 0.0000 | 0.4092 | 0.0000 | 0.0000 | 0.0000 | 0.2873 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0256 | 0.0000 | 0.5785 | 0.9760 | 0.0049 |
boeck2019/multi_task | 0.0000 | 1.0000 | 0.0012 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0002 | 0.0000 | 0.0000 | 0.1614 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
boeck2019/multi_task_hjdb | 0.0000 | 0.0012 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.6815 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
boeck2020/dar | 0.4092 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0971 | 0.0016 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0018 | 0.0000 | 0.1298 | 0.3418 | 0.0014 |
davies2009/mirex_qm_tempotracker | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
echonest/version_3_2_1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0072 | 0.0000 | 0.0000 | 0.6144 | 0.6945 | 0.0926 | 0.8350 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
gkiokas2012/default | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0072 | 1.0000 | 0.0000 | 0.0000 | 0.0006 | 0.0051 | 0.0000 | 0.0025 | 0.0000 | 0.0001 | 0.2040 | 0.0000 | 0.0000 | 0.0005 |
klapuri2006/percival2014 | 0.2873 | 0.0000 | 0.0000 | 0.0971 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.3244 | 0.0001 | 0.4935 | 0.3092 | 0.0241 |
oliveira2010/ibt | 0.0000 | 0.0000 | 0.0000 | 0.0016 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
percival2014/stem | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.6144 | 0.0006 | 0.0000 | 0.0000 | 1.0000 | 0.9737 | 0.1875 | 0.7277 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
scheirer1998/percival2014 | 0.0000 | 0.0002 | 0.0000 | 0.0000 | 0.0000 | 0.6945 | 0.0051 | 0.0000 | 0.0000 | 0.9737 | 1.0000 | 0.3727 | 0.8062 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 |
schreiber2014/default | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0926 | 0.0000 | 0.0000 | 0.0000 | 0.1875 | 0.3727 | 1.0000 | 0.0687 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2017/ismir2017 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.8350 | 0.0025 | 0.0000 | 0.0000 | 0.7277 | 0.8062 | 0.0687 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2017/mirex2017 | 0.0000 | 0.1614 | 0.6815 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2018/cnn | 0.0256 | 0.0000 | 0.0000 | 0.0018 | 0.0000 | 0.0000 | 0.0001 | 0.3244 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0007 | 0.0569 | 0.0145 | 0.4600 |
schreiber2018/fcn | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2040 | 0.0001 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0007 | 1.0000 | 0.0000 | 0.0000 | 0.0352 |
schreiber2018/ismir2018 | 0.5785 | 0.0000 | 0.0000 | 0.1298 | 0.0000 | 0.0000 | 0.0000 | 0.4935 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0569 | 0.0000 | 1.0000 | 0.5124 | 0.0113 |
sun2021/default | 0.9760 | 0.0000 | 0.0000 | 0.3418 | 0.0000 | 0.0000 | 0.0000 | 0.3092 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0145 | 0.0000 | 0.5124 | 1.0000 | 0.0064 |
zplane/auftakt_v3 | 0.0049 | 0.0000 | 0.0000 | 0.0014 | 0.0000 | 0.0000 | 0.0005 | 0.0241 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.4600 | 0.0352 | 0.0113 | 0.0064 | 1.0000 |
Table 19: Paired t-test p-values, using reference annotations GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI as groundtruth with OE1. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.
Estimator | boeck2015/tempodetector2016_default | boeck2019/multi_task | boeck2019/multi_task_hjdb | boeck2020/dar | davies2009/mirex_qm_tempotracker | echonest/version_3_2_1 | gkiokas2012/default | klapuri2006/percival2014 | oliveira2010/ibt | percival2014/stem | scheirer1998/percival2014 | schreiber2014/default | schreiber2017/ismir2017 | schreiber2017/mirex2017 | schreiber2018/cnn | schreiber2018/fcn | schreiber2018/ismir2018 | sun2021/default | zplane/auftakt_v3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
boeck2015/tempodetector2016_default | 1.0000 | 0.0000 | 0.0000 | 0.4092 | 0.0000 | 0.0000 | 0.0000 | 0.2873 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0256 | 0.0000 | 0.5785 | 0.9760 | 0.0049 |
boeck2019/multi_task | 0.0000 | 1.0000 | 0.0012 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0002 | 0.0000 | 0.0000 | 0.1614 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
boeck2019/multi_task_hjdb | 0.0000 | 0.0012 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.6815 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
boeck2020/dar | 0.4092 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0971 | 0.0016 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0018 | 0.0000 | 0.1298 | 0.3418 | 0.0014 |
davies2009/mirex_qm_tempotracker | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
echonest/version_3_2_1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0072 | 0.0000 | 0.0000 | 0.6144 | 0.6945 | 0.0926 | 0.8350 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
gkiokas2012/default | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0072 | 1.0000 | 0.0000 | 0.0000 | 0.0006 | 0.0051 | 0.0000 | 0.0025 | 0.0000 | 0.0001 | 0.2040 | 0.0000 | 0.0000 | 0.0005 |
klapuri2006/percival2014 | 0.2873 | 0.0000 | 0.0000 | 0.0971 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.3244 | 0.0001 | 0.4935 | 0.3092 | 0.0241 |
oliveira2010/ibt | 0.0000 | 0.0000 | 0.0000 | 0.0016 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
percival2014/stem | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.6144 | 0.0006 | 0.0000 | 0.0000 | 1.0000 | 0.9737 | 0.1875 | 0.7277 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
scheirer1998/percival2014 | 0.0000 | 0.0002 | 0.0000 | 0.0000 | 0.0000 | 0.6945 | 0.0051 | 0.0000 | 0.0000 | 0.9737 | 1.0000 | 0.3727 | 0.8062 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 |
schreiber2014/default | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0926 | 0.0000 | 0.0000 | 0.0000 | 0.1875 | 0.3727 | 1.0000 | 0.0687 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2017/ismir2017 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.8350 | 0.0025 | 0.0000 | 0.0000 | 0.7277 | 0.8062 | 0.0687 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2017/mirex2017 | 0.0000 | 0.1614 | 0.6815 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2018/cnn | 0.0256 | 0.0000 | 0.0000 | 0.0018 | 0.0000 | 0.0000 | 0.0001 | 0.3244 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0007 | 0.0569 | 0.0145 | 0.4600 |
schreiber2018/fcn | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2040 | 0.0001 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0007 | 1.0000 | 0.0000 | 0.0000 | 0.0352 |
schreiber2018/ismir2018 | 0.5785 | 0.0000 | 0.0000 | 0.1298 | 0.0000 | 0.0000 | 0.0000 | 0.4935 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0569 | 0.0000 | 1.0000 | 0.5124 | 0.0113 |
sun2021/default | 0.9760 | 0.0000 | 0.0000 | 0.3418 | 0.0000 | 0.0000 | 0.0000 | 0.3092 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0145 | 0.0000 | 0.5124 | 1.0000 | 0.0064 |
zplane/auftakt_v3 | 0.0049 | 0.0000 | 0.0000 | 0.0014 | 0.0000 | 0.0000 | 0.0005 | 0.0241 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.4600 | 0.0352 | 0.0113 | 0.0064 | 1.0000 |
Table 20: Paired t-test p-values, using reference annotations GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI as groundtruth with OE1. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.
Estimator | boeck2015/tempodetector2016_default | boeck2019/multi_task | boeck2019/multi_task_hjdb | boeck2020/dar | davies2009/mirex_qm_tempotracker | echonest/version_3_2_1 | gkiokas2012/default | klapuri2006/percival2014 | oliveira2010/ibt | percival2014/stem | scheirer1998/percival2014 | schreiber2014/default | schreiber2017/ismir2017 | schreiber2017/mirex2017 | schreiber2018/cnn | schreiber2018/fcn | schreiber2018/ismir2018 | sun2021/default | zplane/auftakt_v3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
boeck2015/tempodetector2016_default | 1.0000 | 0.0000 | 0.0000 | 0.4092 | 0.0000 | 0.0000 | 0.0000 | 0.3064 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0252 | 0.0000 | 0.5706 | 0.9760 | 0.0049 |
boeck2019/multi_task | 0.0000 | 1.0000 | 0.0012 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0002 | 0.0000 | 0.0000 | 0.1614 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
boeck2019/multi_task_hjdb | 0.0000 | 0.0012 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.6815 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
boeck2020/dar | 0.4092 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0971 | 0.0016 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0018 | 0.0000 | 0.1298 | 0.3418 | 0.0014 |
davies2009/mirex_qm_tempotracker | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
echonest/version_3_2_1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0085 | 0.0000 | 0.0000 | 0.5867 | 0.6238 | 0.0688 | 0.8030 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 |
gkiokas2012/default | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0085 | 1.0000 | 0.0000 | 0.0000 | 0.0006 | 0.0045 | 0.0000 | 0.0028 | 0.0000 | 0.0001 | 0.2172 | 0.0000 | 0.0000 | 0.0006 |
klapuri2006/percival2014 | 0.3064 | 0.0000 | 0.0000 | 0.0971 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.3007 | 0.0001 | 0.5328 | 0.3092 | 0.0206 |
oliveira2010/ibt | 0.0000 | 0.0000 | 0.0000 | 0.0016 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
percival2014/stem | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.5867 | 0.0006 | 0.0000 | 0.0000 | 1.0000 | 0.9174 | 0.1562 | 0.7277 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
scheirer1998/percival2014 | 0.0000 | 0.0002 | 0.0000 | 0.0000 | 0.0000 | 0.6238 | 0.0045 | 0.0000 | 0.0000 | 0.9174 | 1.0000 | 0.3731 | 0.7540 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 |
schreiber2014/default | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0688 | 0.0000 | 0.0000 | 0.0000 | 0.1562 | 0.3731 | 1.0000 | 0.0535 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2017/ismir2017 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.8030 | 0.0028 | 0.0000 | 0.0000 | 0.7277 | 0.7540 | 0.0535 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2017/mirex2017 | 0.0000 | 0.1614 | 0.6815 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2018/cnn | 0.0252 | 0.0000 | 0.0000 | 0.0018 | 0.0000 | 0.0000 | 0.0001 | 0.3007 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0008 | 0.0577 | 0.0145 | 0.4637 |
schreiber2018/fcn | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.2172 | 0.0001 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0008 | 1.0000 | 0.0000 | 0.0000 | 0.0352 |
schreiber2018/ismir2018 | 0.5706 | 0.0000 | 0.0000 | 0.1298 | 0.0000 | 0.0000 | 0.0000 | 0.5328 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0577 | 0.0000 | 1.0000 | 0.5124 | 0.0117 |
sun2021/default | 0.9760 | 0.0000 | 0.0000 | 0.3418 | 0.0000 | 0.0000 | 0.0000 | 0.3092 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0145 | 0.0000 | 0.5124 | 1.0000 | 0.0064 |
zplane/auftakt_v3 | 0.0049 | 0.0000 | 0.0000 | 0.0014 | 0.0000 | 0.0000 | 0.0006 | 0.0206 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.4637 | 0.0352 | 0.0117 | 0.0064 | 1.0000 |
Table 21: Paired t-test p-values, using reference annotations 2.0 as groundtruth with OE1. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.
Estimator | boeck2015/tempodetector2016_default | boeck2019/multi_task | boeck2019/multi_task_hjdb | boeck2020/dar | davies2009/mirex_qm_tempotracker | echonest/version_3_2_1 | gkiokas2012/default | klapuri2006/percival2014 | oliveira2010/ibt | percival2014/stem | scheirer1998/percival2014 | schreiber2014/default | schreiber2017/ismir2017 | schreiber2017/mirex2017 | schreiber2018/cnn | schreiber2018/fcn | schreiber2018/ismir2018 | sun2021/default | zplane/auftakt_v3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
boeck2015/tempodetector2016_default | 1.0000 | 0.0000 | 0.0000 | 0.4092 | 0.0000 | 0.0000 | 0.0000 | 0.2873 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0256 | 0.0000 | 0.5785 | 0.9760 | 0.0049 |
boeck2019/multi_task | 0.0000 | 1.0000 | 0.0012 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0002 | 0.0000 | 0.0000 | 0.1614 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
boeck2019/multi_task_hjdb | 0.0000 | 0.0012 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.6815 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
boeck2020/dar | 0.4092 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0971 | 0.0016 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0018 | 0.0000 | 0.1298 | 0.3418 | 0.0014 |
davies2009/mirex_qm_tempotracker | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
echonest/version_3_2_1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0072 | 0.0000 | 0.0000 | 0.6144 | 0.6945 | 0.0926 | 0.8350 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
gkiokas2012/default | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0072 | 1.0000 | 0.0000 | 0.0000 | 0.0006 | 0.0051 | 0.0000 | 0.0025 | 0.0000 | 0.0001 | 0.2040 | 0.0000 | 0.0000 | 0.0005 |
klapuri2006/percival2014 | 0.2873 | 0.0000 | 0.0000 | 0.0971 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.3244 | 0.0001 | 0.4935 | 0.3092 | 0.0241 |
oliveira2010/ibt | 0.0000 | 0.0000 | 0.0000 | 0.0016 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
percival2014/stem | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.6144 | 0.0006 | 0.0000 | 0.0000 | 1.0000 | 0.9737 | 0.1875 | 0.7277 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
scheirer1998/percival2014 | 0.0000 | 0.0002 | 0.0000 | 0.0000 | 0.0000 | 0.6945 | 0.0051 | 0.0000 | 0.0000 | 0.9737 | 1.0000 | 0.3727 | 0.8062 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 |
schreiber2014/default | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0926 | 0.0000 | 0.0000 | 0.0000 | 0.1875 | 0.3727 | 1.0000 | 0.0687 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2017/ismir2017 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.8350 | 0.0025 | 0.0000 | 0.0000 | 0.7277 | 0.8062 | 0.0687 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2017/mirex2017 | 0.0000 | 0.1614 | 0.6815 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2018/cnn | 0.0256 | 0.0000 | 0.0000 | 0.0018 | 0.0000 | 0.0000 | 0.0001 | 0.3244 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0007 | 0.0569 | 0.0145 | 0.4600 |
schreiber2018/fcn | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2040 | 0.0001 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0007 | 1.0000 | 0.0000 | 0.0000 | 0.0352 |
schreiber2018/ismir2018 | 0.5785 | 0.0000 | 0.0000 | 0.1298 | 0.0000 | 0.0000 | 0.0000 | 0.4935 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0569 | 0.0000 | 1.0000 | 0.5124 | 0.0113 |
sun2021/default | 0.9760 | 0.0000 | 0.0000 | 0.3418 | 0.0000 | 0.0000 | 0.0000 | 0.3092 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0145 | 0.0000 | 0.5124 | 1.0000 | 0.0064 |
zplane/auftakt_v3 | 0.0049 | 0.0000 | 0.0000 | 0.0014 | 0.0000 | 0.0000 | 0.0005 | 0.0241 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.4600 | 0.0352 | 0.0113 | 0.0064 | 1.0000 |
Table 22: Paired t-test p-values, using reference annotations 1.0 as groundtruth with OE1. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.
Estimator | boeck2015/tempodetector2016_default | boeck2019/multi_task | boeck2019/multi_task_hjdb | boeck2020/dar | davies2009/mirex_qm_tempotracker | echonest/version_3_2_1 | gkiokas2012/default | klapuri2006/percival2014 | oliveira2010/ibt | percival2014/stem | scheirer1998/percival2014 | schreiber2014/default | schreiber2017/ismir2017 | schreiber2017/mirex2017 | schreiber2018/cnn | schreiber2018/fcn | schreiber2018/ismir2018 | sun2021/default | zplane/auftakt_v3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
boeck2015/tempodetector2016_default | 1.0000 | 0.7137 | 0.5158 | 0.3011 | 0.0000 | 0.1358 | 0.7734 | 0.0404 | 0.0008 | 0.4625 | 0.0001 | 0.0004 | 0.2434 | 0.4307 | 0.1959 | 0.9519 | 0.0278 | 0.0000 | 0.0030 |
boeck2019/multi_task | 0.7137 | 1.0000 | 0.1404 | 0.5838 | 0.0000 | 0.0841 | 0.7017 | 0.0489 | 0.0007 | 0.3381 | 0.0001 | 0.0002 | 0.1278 | 0.2693 | 0.1001 | 0.7657 | 0.0165 | 0.0000 | 0.0022 |
boeck2019/multi_task_hjdb | 0.5158 | 0.1404 | 1.0000 | 0.0998 | 0.0000 | 0.3596 | 0.6558 | 0.2205 | 0.0049 | 0.8941 | 0.0000 | 0.0030 | 0.4770 | 0.8164 | 0.4096 | 0.5202 | 0.0756 | 0.0001 | 0.0190 |
boeck2020/dar | 0.3011 | 0.5838 | 0.0998 | 1.0000 | 0.0000 | 0.0564 | 0.4506 | 0.0109 | 0.0001 | 0.1711 | 0.0003 | 0.0000 | 0.0546 | 0.0943 | 0.0374 | 0.4347 | 0.0044 | 0.0000 | 0.0006 |
davies2009/mirex_qm_tempotracker | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.4763 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
echonest/version_3_2_1 | 0.1358 | 0.0841 | 0.3596 | 0.0564 | 0.0000 | 1.0000 | 0.2531 | 0.9281 | 0.1340 | 0.3380 | 0.0000 | 0.2323 | 0.6238 | 0.4088 | 0.6773 | 0.1297 | 0.6677 | 0.0484 | 0.2580 |
gkiokas2012/default | 0.7734 | 0.7017 | 0.6558 | 0.4506 | 0.0000 | 0.2531 | 1.0000 | 0.1426 | 0.0054 | 0.7139 | 0.0001 | 0.0025 | 0.3837 | 0.6508 | 0.3739 | 0.7607 | 0.0691 | 0.0001 | 0.0185 |
klapuri2006/percival2014 | 0.0404 | 0.0489 | 0.2205 | 0.0109 | 0.0000 | 0.9281 | 0.1426 | 1.0000 | 0.0821 | 0.1971 | 0.0000 | 0.1878 | 0.4805 | 0.2343 | 0.5288 | 0.0376 | 0.6927 | 0.0203 | 0.2145 |
oliveira2010/ibt | 0.0008 | 0.0007 | 0.0049 | 0.0001 | 0.0000 | 0.1340 | 0.0054 | 0.0821 | 1.0000 | 0.0056 | 0.0000 | 0.5802 | 0.0306 | 0.0070 | 0.0365 | 0.0009 | 0.2492 | 0.9155 | 0.7377 |
percival2014/stem | 0.4625 | 0.3381 | 0.8941 | 0.1711 | 0.0000 | 0.3380 | 0.7139 | 0.1971 | 0.0056 | 1.0000 | 0.0000 | 0.0048 | 0.5592 | 0.9099 | 0.5325 | 0.4651 | 0.0701 | 0.0002 | 0.0191 |
scheirer1998/percival2014 | 0.0001 | 0.0001 | 0.0000 | 0.0003 | 0.4763 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 |
schreiber2014/default | 0.0004 | 0.0002 | 0.0030 | 0.0000 | 0.0000 | 0.2323 | 0.0025 | 0.1878 | 0.5802 | 0.0048 | 0.0000 | 1.0000 | 0.0118 | 0.0078 | 0.0500 | 0.0023 | 0.4452 | 0.4330 | 0.8752 |
schreiber2017/ismir2017 | 0.2434 | 0.1278 | 0.4770 | 0.0546 | 0.0000 | 0.6238 | 0.3837 | 0.4805 | 0.0306 | 0.5592 | 0.0000 | 0.0118 | 1.0000 | 0.5556 | 0.9436 | 0.2182 | 0.2793 | 0.0036 | 0.0659 |
schreiber2017/mirex2017 | 0.4307 | 0.2693 | 0.8164 | 0.0943 | 0.0000 | 0.4088 | 0.6508 | 0.2343 | 0.0070 | 0.9099 | 0.0000 | 0.0078 | 0.5556 | 1.0000 | 0.5232 | 0.4130 | 0.1588 | 0.0004 | 0.0254 |
schreiber2018/cnn | 0.1959 | 0.1001 | 0.4096 | 0.0374 | 0.0000 | 0.6773 | 0.3739 | 0.5288 | 0.0365 | 0.5325 | 0.0000 | 0.0500 | 0.9436 | 0.5232 | 1.0000 | 0.1533 | 0.3139 | 0.0045 | 0.0827 |
schreiber2018/fcn | 0.9519 | 0.7657 | 0.5202 | 0.4347 | 0.0000 | 0.1297 | 0.7607 | 0.0376 | 0.0009 | 0.4651 | 0.0001 | 0.0023 | 0.2182 | 0.4130 | 0.1533 | 1.0000 | 0.0224 | 0.0000 | 0.0039 |
schreiber2018/ismir2018 | 0.0278 | 0.0165 | 0.0756 | 0.0044 | 0.0000 | 0.6677 | 0.0691 | 0.6927 | 0.2492 | 0.0701 | 0.0000 | 0.4452 | 0.2793 | 0.1588 | 0.3139 | 0.0224 | 1.0000 | 0.1583 | 0.4395 |
sun2021/default | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0484 | 0.0001 | 0.0203 | 0.9155 | 0.0002 | 0.0000 | 0.4330 | 0.0036 | 0.0004 | 0.0045 | 0.0000 | 0.1583 | 1.0000 | 0.6372 |
zplane/auftakt_v3 | 0.0030 | 0.0022 | 0.0190 | 0.0006 | 0.0000 | 0.2580 | 0.0185 | 0.2145 | 0.7377 | 0.0191 | 0.0000 | 0.8752 | 0.0659 | 0.0254 | 0.0827 | 0.0039 | 0.4395 | 0.6372 | 1.0000 |
Table 23: Paired t-test p-values, using reference annotations GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI as groundtruth with OE2. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.
Estimator | boeck2015/tempodetector2016_default | boeck2019/multi_task | boeck2019/multi_task_hjdb | boeck2020/dar | davies2009/mirex_qm_tempotracker | echonest/version_3_2_1 | gkiokas2012/default | klapuri2006/percival2014 | oliveira2010/ibt | percival2014/stem | scheirer1998/percival2014 | schreiber2014/default | schreiber2017/ismir2017 | schreiber2017/mirex2017 | schreiber2018/cnn | schreiber2018/fcn | schreiber2018/ismir2018 | sun2021/default | zplane/auftakt_v3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
boeck2015/tempodetector2016_default | 1.0000 | 0.7137 | 0.5158 | 0.5876 | 0.0000 | 0.1205 | 0.6191 | 0.0873 | 0.0005 | 0.4625 | 0.0001 | 0.0002 | 0.2434 | 0.4307 | 0.3200 | 0.9519 | 0.0278 | 0.0000 | 0.0016 |
boeck2019/multi_task | 0.7137 | 1.0000 | 0.1404 | 0.9281 | 0.0000 | 0.0821 | 0.5562 | 0.0976 | 0.0005 | 0.3381 | 0.0001 | 0.0000 | 0.1278 | 0.2693 | 0.1852 | 0.7657 | 0.0165 | 0.0000 | 0.0012 |
boeck2019/multi_task_hjdb | 0.5158 | 0.1404 | 1.0000 | 0.2291 | 0.0000 | 0.3394 | 0.8035 | 0.3645 | 0.0034 | 0.8941 | 0.0000 | 0.0008 | 0.4770 | 0.8164 | 0.6238 | 0.5202 | 0.0756 | 0.0001 | 0.0119 |
boeck2020/dar | 0.5876 | 0.9281 | 0.2291 | 1.0000 | 0.0000 | 0.0870 | 0.5294 | 0.0611 | 0.0001 | 0.3039 | 0.0001 | 0.0000 | 0.1120 | 0.1972 | 0.1543 | 0.7065 | 0.0105 | 0.0000 | 0.0006 |
davies2009/mirex_qm_tempotracker | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.5975 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
echonest/version_3_2_1 | 0.1205 | 0.0821 | 0.3394 | 0.0870 | 0.0000 | 1.0000 | 0.3087 | 0.8609 | 0.0978 | 0.3416 | 0.0000 | 0.1501 | 0.6267 | 0.4126 | 0.5082 | 0.1299 | 0.6655 | 0.0513 | 0.2125 |
gkiokas2012/default | 0.6191 | 0.5562 | 0.8035 | 0.5294 | 0.0000 | 0.3087 | 1.0000 | 0.3169 | 0.0060 | 0.8652 | 0.0000 | 0.0018 | 0.4851 | 0.7878 | 0.6756 | 0.6231 | 0.0940 | 0.0002 | 0.0185 |
klapuri2006/percival2014 | 0.0873 | 0.0976 | 0.3645 | 0.0611 | 0.0000 | 0.8609 | 0.3169 | 1.0000 | 0.0310 | 0.3299 | 0.0000 | 0.0478 | 0.6883 | 0.3844 | 0.5259 | 0.0767 | 0.5104 | 0.0085 | 0.1014 |
oliveira2010/ibt | 0.0005 | 0.0005 | 0.0034 | 0.0001 | 0.0000 | 0.0978 | 0.0060 | 0.0310 | 1.0000 | 0.0031 | 0.0000 | 0.6671 | 0.0223 | 0.0048 | 0.0134 | 0.0005 | 0.1871 | 0.9635 | 0.7372 |
percival2014/stem | 0.4625 | 0.3381 | 0.8941 | 0.3039 | 0.0000 | 0.3416 | 0.8652 | 0.3299 | 0.0031 | 1.0000 | 0.0000 | 0.0023 | 0.5592 | 0.9099 | 0.7599 | 0.4651 | 0.0701 | 0.0002 | 0.0125 |
scheirer1998/percival2014 | 0.0001 | 0.0001 | 0.0000 | 0.0001 | 0.5975 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 |
schreiber2014/default | 0.0002 | 0.0000 | 0.0008 | 0.0000 | 0.0000 | 0.1501 | 0.0018 | 0.0478 | 0.6671 | 0.0023 | 0.0000 | 1.0000 | 0.0019 | 0.0016 | 0.0061 | 0.0006 | 0.3106 | 0.6360 | 0.9639 |
schreiber2017/ismir2017 | 0.2434 | 0.1278 | 0.4770 | 0.1120 | 0.0000 | 0.6267 | 0.4851 | 0.6883 | 0.0223 | 0.5592 | 0.0000 | 0.0019 | 1.0000 | 0.5556 | 0.7766 | 0.2182 | 0.2793 | 0.0036 | 0.0448 |
schreiber2017/mirex2017 | 0.4307 | 0.2693 | 0.8164 | 0.1972 | 0.0000 | 0.4126 | 0.7878 | 0.3844 | 0.0048 | 0.9099 | 0.0000 | 0.0016 | 0.5556 | 1.0000 | 0.8167 | 0.4130 | 0.1588 | 0.0004 | 0.0160 |
schreiber2018/cnn | 0.3200 | 0.1852 | 0.6238 | 0.1543 | 0.0000 | 0.5082 | 0.6756 | 0.5259 | 0.0134 | 0.7599 | 0.0000 | 0.0061 | 0.7766 | 0.8167 | 1.0000 | 0.2672 | 0.1850 | 0.0020 | 0.0288 |
schreiber2018/fcn | 0.9519 | 0.7657 | 0.5202 | 0.7065 | 0.0000 | 0.1299 | 0.6231 | 0.0767 | 0.0005 | 0.4651 | 0.0001 | 0.0006 | 0.2182 | 0.4130 | 0.2672 | 1.0000 | 0.0224 | 0.0000 | 0.0022 |
schreiber2018/ismir2018 | 0.0278 | 0.0165 | 0.0756 | 0.0105 | 0.0000 | 0.6655 | 0.0940 | 0.5104 | 0.1871 | 0.0701 | 0.0000 | 0.3106 | 0.2793 | 0.1588 | 0.1850 | 0.0224 | 1.0000 | 0.1583 | 0.3588 |
sun2021/default | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0513 | 0.0002 | 0.0085 | 0.9635 | 0.0002 | 0.0000 | 0.6360 | 0.0036 | 0.0004 | 0.0020 | 0.0000 | 0.1583 | 1.0000 | 0.7504 |
zplane/auftakt_v3 | 0.0016 | 0.0012 | 0.0119 | 0.0006 | 0.0000 | 0.2125 | 0.0185 | 0.1014 | 0.7372 | 0.0125 | 0.0000 | 0.9639 | 0.0448 | 0.0160 | 0.0288 | 0.0022 | 0.3588 | 0.7504 | 1.0000 |
Table 24: Paired t-test p-values, using reference annotations GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI as groundtruth with OE2. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.
Estimator | boeck2015/tempodetector2016_default | boeck2019/multi_task | boeck2019/multi_task_hjdb | boeck2020/dar | davies2009/mirex_qm_tempotracker | echonest/version_3_2_1 | gkiokas2012/default | klapuri2006/percival2014 | oliveira2010/ibt | percival2014/stem | scheirer1998/percival2014 | schreiber2014/default | schreiber2017/ismir2017 | schreiber2017/mirex2017 | schreiber2018/cnn | schreiber2018/fcn | schreiber2018/ismir2018 | sun2021/default | zplane/auftakt_v3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
boeck2015/tempodetector2016_default | 1.0000 | 0.6184 | 0.3381 | 0.7640 | 0.0000 | 0.0130 | 0.4492 | 0.0159 | 0.0020 | 0.7020 | 0.0000 | 0.0001 | 0.0441 | 0.2808 | 0.2252 | 0.0711 | 0.0710 | 0.0000 | 0.0013 |
boeck2019/multi_task | 0.6184 | 1.0000 | 0.2720 | 0.7591 | 0.0000 | 0.0303 | 0.7649 | 0.0708 | 0.0080 | 0.4113 | 0.0000 | 0.0002 | 0.0943 | 0.5532 | 0.4308 | 0.1359 | 0.1390 | 0.0000 | 0.0080 |
boeck2019/multi_task_hjdb | 0.3381 | 0.2720 | 1.0000 | 0.3964 | 0.0000 | 0.0665 | 0.9652 | 0.1261 | 0.0163 | 0.2376 | 0.0000 | 0.0004 | 0.1808 | 0.8375 | 0.6705 | 0.2826 | 0.2510 | 0.0000 | 0.0162 |
boeck2020/dar | 0.7640 | 0.7591 | 0.3964 | 1.0000 | 0.0000 | 0.0191 | 0.6095 | 0.0271 | 0.0023 | 0.5423 | 0.0000 | 0.0001 | 0.0385 | 0.3363 | 0.2815 | 0.0859 | 0.0820 | 0.0000 | 0.0024 |
davies2009/mirex_qm_tempotracker | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1828 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
echonest/version_3_2_1 | 0.0130 | 0.0303 | 0.0665 | 0.0191 | 0.0000 | 1.0000 | 0.1194 | 0.6542 | 0.5822 | 0.0106 | 0.0000 | 0.4033 | 0.4708 | 0.1063 | 0.2012 | 0.3398 | 0.4587 | 0.1711 | 0.5699 |
gkiokas2012/default | 0.4492 | 0.7649 | 0.9652 | 0.6095 | 0.0000 | 0.1194 | 1.0000 | 0.1551 | 0.0218 | 0.3253 | 0.0000 | 0.0026 | 0.2109 | 0.8133 | 0.6842 | 0.3591 | 0.3375 | 0.0002 | 0.0228 |
klapuri2006/percival2014 | 0.0159 | 0.0708 | 0.1261 | 0.0271 | 0.0000 | 0.6542 | 0.1551 | 1.0000 | 0.2359 | 0.0130 | 0.0000 | 0.1241 | 0.7327 | 0.1379 | 0.2815 | 0.4989 | 0.7058 | 0.0384 | 0.2584 |
oliveira2010/ibt | 0.0020 | 0.0080 | 0.0163 | 0.0023 | 0.0000 | 0.5822 | 0.0218 | 0.2359 | 1.0000 | 0.0011 | 0.0000 | 0.8343 | 0.1705 | 0.0155 | 0.0504 | 0.1036 | 0.1881 | 0.4865 | 0.9582 |
percival2014/stem | 0.7020 | 0.4113 | 0.2376 | 0.5423 | 0.0000 | 0.0106 | 0.3253 | 0.0130 | 0.0011 | 1.0000 | 0.0000 | 0.0000 | 0.0200 | 0.1518 | 0.1800 | 0.0612 | 0.0297 | 0.0000 | 0.0021 |
scheirer1998/percival2014 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1828 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2014/default | 0.0001 | 0.0002 | 0.0004 | 0.0001 | 0.0000 | 0.4033 | 0.0026 | 0.1241 | 0.8343 | 0.0000 | 0.0000 | 1.0000 | 0.0125 | 0.0008 | 0.0069 | 0.0284 | 0.0617 | 0.5128 | 0.8777 |
schreiber2017/ismir2017 | 0.0441 | 0.0943 | 0.1808 | 0.0385 | 0.0000 | 0.4708 | 0.2109 | 0.7327 | 0.1705 | 0.0200 | 0.0000 | 0.0125 | 1.0000 | 0.1183 | 0.3794 | 0.7086 | 0.9329 | 0.0106 | 0.1423 |
schreiber2017/mirex2017 | 0.2808 | 0.5532 | 0.8375 | 0.3363 | 0.0000 | 0.1063 | 0.8133 | 0.1379 | 0.0155 | 0.1518 | 0.0000 | 0.0008 | 0.1183 | 1.0000 | 0.7900 | 0.3625 | 0.3338 | 0.0000 | 0.0215 |
schreiber2018/cnn | 0.2252 | 0.4308 | 0.6705 | 0.2815 | 0.0000 | 0.2012 | 0.6842 | 0.2815 | 0.0504 | 0.1800 | 0.0000 | 0.0069 | 0.3794 | 0.7900 | 1.0000 | 0.5346 | 0.5189 | 0.0006 | 0.0373 |
schreiber2018/fcn | 0.0711 | 0.1359 | 0.2826 | 0.0859 | 0.0000 | 0.3398 | 0.3591 | 0.4989 | 0.1036 | 0.0612 | 0.0000 | 0.0284 | 0.7086 | 0.3625 | 0.5346 | 1.0000 | 0.8162 | 0.0035 | 0.1064 |
schreiber2018/ismir2018 | 0.0710 | 0.1390 | 0.2510 | 0.0820 | 0.0000 | 0.4587 | 0.3375 | 0.7058 | 0.1881 | 0.0297 | 0.0000 | 0.0617 | 0.9329 | 0.3338 | 0.5189 | 0.8162 | 1.0000 | 0.0103 | 0.1756 |
sun2021/default | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1711 | 0.0002 | 0.0384 | 0.4865 | 0.0000 | 0.0000 | 0.5128 | 0.0106 | 0.0000 | 0.0006 | 0.0035 | 0.0103 | 1.0000 | 0.5201 |
zplane/auftakt_v3 | 0.0013 | 0.0080 | 0.0162 | 0.0024 | 0.0000 | 0.5699 | 0.0228 | 0.2584 | 0.9582 | 0.0021 | 0.0000 | 0.8777 | 0.1423 | 0.0215 | 0.0373 | 0.1064 | 0.1756 | 0.5201 | 1.0000 |
Table 25: Paired t-test p-values, using reference annotations 2.0 as groundtruth with OE2. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.
Estimator | boeck2015/tempodetector2016_default | boeck2019/multi_task | boeck2019/multi_task_hjdb | boeck2020/dar | davies2009/mirex_qm_tempotracker | echonest/version_3_2_1 | gkiokas2012/default | klapuri2006/percival2014 | oliveira2010/ibt | percival2014/stem | scheirer1998/percival2014 | schreiber2014/default | schreiber2017/ismir2017 | schreiber2017/mirex2017 | schreiber2018/cnn | schreiber2018/fcn | schreiber2018/ismir2018 | sun2021/default | zplane/auftakt_v3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
boeck2015/tempodetector2016_default | 1.0000 | 0.5201 | 0.2781 | 0.9949 | 0.0000 | 0.0102 | 0.1745 | 0.0072 | 0.0005 | 0.6177 | 0.0001 | 0.0003 | 0.0746 | 0.2797 | 0.0889 | 0.0494 | 0.0931 | 0.0000 | 0.0004 |
boeck2019/multi_task | 0.5201 | 1.0000 | 0.2720 | 0.4276 | 0.0000 | 0.0345 | 0.5970 | 0.0681 | 0.0036 | 0.9452 | 0.0000 | 0.0008 | 0.1892 | 0.6744 | 0.3304 | 0.1359 | 0.2633 | 0.0003 | 0.0049 |
boeck2019/multi_task_hjdb | 0.2781 | 0.2720 | 1.0000 | 0.1805 | 0.0000 | 0.0727 | 0.8401 | 0.1212 | 0.0076 | 0.6639 | 0.0000 | 0.0017 | 0.3299 | 0.9661 | 0.5370 | 0.2826 | 0.4269 | 0.0011 | 0.0101 |
boeck2020/dar | 0.9949 | 0.4276 | 0.1805 | 1.0000 | 0.0000 | 0.0099 | 0.2924 | 0.0101 | 0.0003 | 0.5995 | 0.0001 | 0.0001 | 0.0385 | 0.2383 | 0.1060 | 0.0364 | 0.0890 | 0.0000 | 0.0005 |
davies2009/mirex_qm_tempotracker | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.5136 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
echonest/version_3_2_1 | 0.0102 | 0.0345 | 0.0727 | 0.0099 | 0.0000 | 1.0000 | 0.1779 | 0.7085 | 0.4875 | 0.0319 | 0.0000 | 0.6645 | 0.2639 | 0.0631 | 0.2533 | 0.2849 | 0.3126 | 0.4844 | 0.5444 |
gkiokas2012/default | 0.1745 | 0.5970 | 0.8401 | 0.2924 | 0.0000 | 0.1779 | 1.0000 | 0.1974 | 0.0253 | 0.4716 | 0.0000 | 0.0284 | 0.6336 | 0.7119 | 0.7416 | 0.6388 | 0.6666 | 0.0091 | 0.0310 |
klapuri2006/percival2014 | 0.0072 | 0.0681 | 0.1212 | 0.0101 | 0.0000 | 0.7085 | 0.1974 | 1.0000 | 0.1883 | 0.0451 | 0.0000 | 0.3512 | 0.3934 | 0.0646 | 0.3435 | 0.3586 | 0.4595 | 0.2051 | 0.2688 |
oliveira2010/ibt | 0.0005 | 0.0036 | 0.0076 | 0.0003 | 0.0000 | 0.4875 | 0.0253 | 0.1883 | 1.0000 | 0.0024 | 0.0000 | 0.7137 | 0.0503 | 0.0033 | 0.0478 | 0.0474 | 0.0884 | 0.8254 | 0.9616 |
percival2014/stem | 0.6177 | 0.9452 | 0.6639 | 0.5995 | 0.0000 | 0.0319 | 0.4716 | 0.0451 | 0.0024 | 1.0000 | 0.0001 | 0.0011 | 0.1791 | 0.5953 | 0.2775 | 0.1931 | 0.1841 | 0.0003 | 0.0062 |
scheirer1998/percival2014 | 0.0001 | 0.0000 | 0.0000 | 0.0001 | 0.5136 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2014/default | 0.0003 | 0.0008 | 0.0017 | 0.0001 | 0.0000 | 0.6645 | 0.0284 | 0.3512 | 0.7137 | 0.0011 | 0.0000 | 1.0000 | 0.0125 | 0.0021 | 0.0496 | 0.0619 | 0.0911 | 0.8682 | 0.7573 |
schreiber2017/ismir2017 | 0.0746 | 0.1892 | 0.3299 | 0.0385 | 0.0000 | 0.2639 | 0.6336 | 0.3934 | 0.0503 | 0.1791 | 0.0000 | 0.0125 | 1.0000 | 0.2187 | 0.8803 | 0.9876 | 0.9613 | 0.0468 | 0.0572 |
schreiber2017/mirex2017 | 0.2797 | 0.6744 | 0.9661 | 0.2383 | 0.0000 | 0.0631 | 0.7119 | 0.0646 | 0.0033 | 0.5953 | 0.0000 | 0.0021 | 0.2187 | 1.0000 | 0.4093 | 0.2741 | 0.3830 | 0.0013 | 0.0081 |
schreiber2018/cnn | 0.0889 | 0.3304 | 0.5370 | 0.1060 | 0.0000 | 0.2533 | 0.7416 | 0.3435 | 0.0478 | 0.2775 | 0.0000 | 0.0496 | 0.8803 | 0.4093 | 1.0000 | 0.8652 | 0.8607 | 0.0189 | 0.0508 |
schreiber2018/fcn | 0.0494 | 0.1359 | 0.2826 | 0.0364 | 0.0000 | 0.2849 | 0.6388 | 0.3586 | 0.0474 | 0.1931 | 0.0000 | 0.0619 | 0.9876 | 0.2741 | 0.8652 | 1.0000 | 0.9519 | 0.0388 | 0.0664 |
schreiber2018/ismir2018 | 0.0931 | 0.2633 | 0.4269 | 0.0890 | 0.0000 | 0.3126 | 0.6666 | 0.4595 | 0.0884 | 0.1841 | 0.0000 | 0.0911 | 0.9613 | 0.3830 | 0.8607 | 0.9519 | 1.0000 | 0.0453 | 0.1055 |
sun2021/default | 0.0000 | 0.0003 | 0.0011 | 0.0000 | 0.0000 | 0.4844 | 0.0091 | 0.2051 | 0.8254 | 0.0003 | 0.0000 | 0.8682 | 0.0468 | 0.0013 | 0.0189 | 0.0388 | 0.0453 | 1.0000 | 0.8724 |
zplane/auftakt_v3 | 0.0004 | 0.0049 | 0.0101 | 0.0005 | 0.0000 | 0.5444 | 0.0310 | 0.2688 | 0.9616 | 0.0062 | 0.0000 | 0.7573 | 0.0572 | 0.0081 | 0.0508 | 0.0664 | 0.1055 | 0.8724 | 1.0000 |
Table 26: Paired t-test p-values, using reference annotations 1.0 as groundtruth with OE2. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.
OE1 on cvar-Subsets
How well does an estimator perform, when only taking tracks into account that have a cvar-value of less than τ, i.e., have a more or less stable beat?
OE1 on cvar-Subsets for 1.0 based on cvar-Values from GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28
Figure 62: Mean OE1 compared to version 1.0 for tracks with cvar < τ based on beat annotations from 1.0.
CSV JSON LATEX PICKLE SVG PDF PNG
OE1 on cvar-Subsets for 2.0 based on cvar-Values from GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28
Figure 63: Mean OE1 compared to version 2.0 for tracks with cvar < τ based on beat annotations from 2.0.
CSV JSON LATEX PICKLE SVG PDF PNG
OE1 on cvar-Subsets for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI based on cvar-Values from GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28
Figure 64: Mean OE1 compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI for tracks with cvar < τ based on beat annotations from GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI.
CSV JSON LATEX PICKLE SVG PDF PNG
OE1 on cvar-Subsets for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI based on cvar-Values from GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28
Figure 65: Mean OE1 compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI for tracks with cvar < τ based on beat annotations from GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI.
CSV JSON LATEX PICKLE SVG PDF PNG
OE2 on cvar-Subsets
How well does an estimator perform, when only taking tracks into account that have a cvar-value of less than τ, i.e., have a more or less stable beat?
OE2 on cvar-Subsets for 1.0 based on cvar-Values from GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28
Figure 66: Mean OE2 compared to version 1.0 for tracks with cvar < τ based on beat annotations from 1.0.
CSV JSON LATEX PICKLE SVG PDF PNG
OE2 on cvar-Subsets for 2.0 based on cvar-Values from GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28
Figure 67: Mean OE2 compared to version 2.0 for tracks with cvar < τ based on beat annotations from 2.0.
CSV JSON LATEX PICKLE SVG PDF PNG
OE2 on cvar-Subsets for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI based on cvar-Values from GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28
Figure 68: Mean OE2 compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI for tracks with cvar < τ based on beat annotations from GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI.
CSV JSON LATEX PICKLE SVG PDF PNG
OE2 on cvar-Subsets for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI based on cvar-Values from GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28
Figure 69: Mean OE2 compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI for tracks with cvar < τ based on beat annotations from GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI.
CSV JSON LATEX PICKLE SVG PDF PNG
OE1 on Tempo-Subsets
How well does an estimator perform, when only taking a subset of the reference annotations into account? The graphs show mean OE1 for reference subsets with tempi in [T-10,T+10] BPM. Note that the graphs do not show confidence intervals and that some values may be based on very few estimates.
OE1 on Tempo-Subsets for 1.0
Figure 70: Mean OE1 for estimates compared to version 1.0 for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
OE1 on Tempo-Subsets for 2.0
Figure 71: Mean OE1 for estimates compared to version 2.0 for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
OE1 on Tempo-Subsets for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI
Figure 72: Mean OE1 for estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
OE1 on Tempo-Subsets for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI
Figure 73: Mean OE1 for estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
OE2 on Tempo-Subsets
How well does an estimator perform, when only taking a subset of the reference annotations into account? The graphs show mean OE2 for reference subsets with tempi in [T-10,T+10] BPM. Note that the graphs do not show confidence intervals and that some values may be based on very few estimates.
OE2 on Tempo-Subsets for 1.0
Figure 74: Mean OE2 for estimates compared to version 1.0 for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
OE2 on Tempo-Subsets for 2.0
Figure 75: Mean OE2 for estimates compared to version 2.0 for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
OE2 on Tempo-Subsets for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI
Figure 76: Mean OE2 for estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
OE2 on Tempo-Subsets for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI
Figure 77: Mean OE2 for estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated OE1 for Tempo
When fitting a generalized additive model (GAM) to OE1-values and a ground truth, what OE1 can we expect with confidence?
Estimated OE1 for Tempo for 1.0
Predictions of GAMs trained on OE1 for estimates for reference 1.0.
Figure 78: OE1 predictions of a generalized additive model (GAM) fit to OE1 results for 1.0. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated OE1 for Tempo for 2.0
Predictions of GAMs trained on OE1 for estimates for reference 2.0.
Figure 79: OE1 predictions of a generalized additive model (GAM) fit to OE1 results for 2.0. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated OE1 for Tempo for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI
Predictions of GAMs trained on OE1 for estimates for reference GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI.
Figure 80: OE1 predictions of a generalized additive model (GAM) fit to OE1 results for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated OE1 for Tempo for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI
Predictions of GAMs trained on OE1 for estimates for reference GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI.
Figure 81: OE1 predictions of a generalized additive model (GAM) fit to OE1 results for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated OE2 for Tempo
When fitting a generalized additive model (GAM) to OE2-values and a ground truth, what OE2 can we expect with confidence?
Estimated OE2 for Tempo for 1.0
Predictions of GAMs trained on OE2 for estimates for reference 1.0.
Figure 82: OE2 predictions of a generalized additive model (GAM) fit to OE2 results for 1.0. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated OE2 for Tempo for 2.0
Predictions of GAMs trained on OE2 for estimates for reference 2.0.
Figure 83: OE2 predictions of a generalized additive model (GAM) fit to OE2 results for 2.0. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated OE2 for Tempo for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI
Predictions of GAMs trained on OE2 for estimates for reference GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI.
Figure 84: OE2 predictions of a generalized additive model (GAM) fit to OE2 results for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated OE2 for Tempo for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI
Predictions of GAMs trained on OE2 for estimates for reference GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI.
Figure 85: OE2 predictions of a generalized additive model (GAM) fit to OE2 results for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
OE1 for ‘tag_open’ Tags
How well does an estimator perform, when only taking tracks into account that are tagged with some kind of label? Note that some values may be based on very few estimates.
OE1 for ‘tag_open’ Tags for 1.0
Figure 86: OE1 of estimates compared to version 1.0 depending on tag from namespace ‘tag_open’.
OE1 for ‘tag_open’ Tags for 2.0
Figure 87: OE1 of estimates compared to version 2.0 depending on tag from namespace ‘tag_open’.
OE1 for ‘tag_open’ Tags for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI
Figure 88: OE1 of estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI depending on tag from namespace ‘tag_open’.
OE1 for ‘tag_open’ Tags for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI
Figure 89: OE1 of estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI depending on tag from namespace ‘tag_open’.
OE1 for ‘tag_gtzan’ Tags
How well does an estimator perform, when only taking tracks into account that are tagged with some kind of label? Note that some values may be based on very few estimates.
OE1 for ‘tag_gtzan’ Tags for 1.0
Figure 90: OE1 of estimates compared to version 1.0 depending on tag from namespace ‘tag_gtzan’.
OE1 for ‘tag_gtzan’ Tags for 2.0
Figure 91: OE1 of estimates compared to version 2.0 depending on tag from namespace ‘tag_gtzan’.
OE1 for ‘tag_gtzan’ Tags for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI
Figure 92: OE1 of estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI depending on tag from namespace ‘tag_gtzan’.
OE1 for ‘tag_gtzan’ Tags for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI
Figure 93: OE1 of estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI depending on tag from namespace ‘tag_gtzan’.
OE2 for ‘tag_open’ Tags
How well does an estimator perform, when only taking tracks into account that are tagged with some kind of label? Note that some values may be based on very few estimates.
OE2 for ‘tag_open’ Tags for 1.0
Figure 94: OE2 of estimates compared to version 1.0 depending on tag from namespace ‘tag_open’.
OE2 for ‘tag_open’ Tags for 2.0
Figure 95: OE2 of estimates compared to version 2.0 depending on tag from namespace ‘tag_open’.
OE2 for ‘tag_open’ Tags for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI
Figure 96: OE2 of estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI depending on tag from namespace ‘tag_open’.
OE2 for ‘tag_open’ Tags for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI
Figure 97: OE2 of estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI depending on tag from namespace ‘tag_open’.
OE2 for ‘tag_gtzan’ Tags
How well does an estimator perform, when only taking tracks into account that are tagged with some kind of label? Note that some values may be based on very few estimates.
OE2 for ‘tag_gtzan’ Tags for 1.0
Figure 98: OE2 of estimates compared to version 1.0 depending on tag from namespace ‘tag_gtzan’.
OE2 for ‘tag_gtzan’ Tags for 2.0
Figure 99: OE2 of estimates compared to version 2.0 depending on tag from namespace ‘tag_gtzan’.
OE2 for ‘tag_gtzan’ Tags for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI
Figure 100: OE2 of estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI depending on tag from namespace ‘tag_gtzan’.
OE2 for ‘tag_gtzan’ Tags for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI
Figure 101: OE2 of estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI depending on tag from namespace ‘tag_gtzan’.
AOE1 and AOE2
AOE1 is defined as absolute octave error between an estimate and a reference value: AOE1(E) = |log2(E/R)|
.
AOE2 is the minimum of AOE1 allowing the octave errors 2, 3, 1/2, and 1/3: AOE2(E) = min(AOE1(E), AOE1(2E), AOE1(3E), AOE1(½E), AOE1(⅓E))
.
Mean AOE1/AOE2 Results for 1.0
Estimator | AOE1_MEAN | AOE1_STDEV | AOE2_MEAN | AOE2_STDEV |
---|---|---|---|---|
schreiber2017/mirex2017 | 0.1061 | 0.2940 | 0.0185 | 0.0451 |
schreiber2017/ismir2017 | 0.2014 | 0.3816 | 0.0274 | 0.0749 |
boeck2019/multi_task_hjdb | 0.2027 | 0.3837 | 0.0249 | 0.0667 |
percival2014/stem | 0.2030 | 0.3847 | 0.0255 | 0.0682 |
schreiber2014/default | 0.2055 | 0.3797 | 0.0317 | 0.0844 |
boeck2019/multi_task | 0.2076 | 0.3849 | 0.0247 | 0.0669 |
schreiber2018/fcn | 0.2534 | 0.4262 | 0.0238 | 0.0658 |
echonest/version_3_2_1 | 0.2541 | 0.4021 | 0.0461 | 0.1019 |
schreiber2018/cnn | 0.2733 | 0.4362 | 0.0241 | 0.0702 |
gkiokas2012/default | 0.2754 | 0.4439 | 0.0297 | 0.0811 |
zplane/auftakt_v3 | 0.2877 | 0.4449 | 0.0440 | 0.1025 |
klapuri2006/percival2014 | 0.2878 | 0.4435 | 0.0309 | 0.0785 |
schreiber2018/ismir2018 | 0.2986 | 0.4473 | 0.0310 | 0.0846 |
boeck2015/tempodetector2016_default | 0.3026 | 0.4737 | 0.0242 | 0.0640 |
sun2021/default | 0.3118 | 0.4431 | 0.0334 | 0.0767 |
boeck2020/dar | 0.3126 | 0.4598 | 0.0200 | 0.0554 |
scheirer1998/percival2014 | 0.3355 | 0.4305 | 0.0817 | 0.1397 |
oliveira2010/ibt | 0.3558 | 0.4684 | 0.0451 | 0.0925 |
davies2009/mirex_qm_tempotracker | 0.4046 | 0.5031 | 0.0376 | 0.0693 |
Table 27: Mean AOE1/AOE2 for estimates compared to version 1.0 ordered by mean.
Raw data AOE1: CSV JSON LATEX PICKLE
Raw data AOE2: CSV JSON LATEX PICKLE
AOE1 distribution for 1.0
Figure 102: AOE1 for estimates compared to version 1.0. Shown are the mean AOE1 and an empirical distribution of the sample, using kernel density estimation (KDE).
CSV JSON LATEX PICKLE SVG PDF PNG
AOE2 distribution for 1.0
Figure 103: AOE2 for estimates compared to version 1.0. Shown are the mean AOE2 and an empirical distribution of the sample, using kernel density estimation (KDE).
CSV JSON LATEX PICKLE SVG PDF PNG
Mean AOE1/AOE2 Results for 2.0
Estimator | AOE1_MEAN | AOE1_STDEV | AOE2_MEAN | AOE2_STDEV |
---|---|---|---|---|
schreiber2017/mirex2017 | 0.1047 | 0.2928 | 0.0163 | 0.0404 |
schreiber2017/ismir2017 | 0.1974 | 0.3804 | 0.0252 | 0.0718 |
percival2014/stem | 0.1992 | 0.3821 | 0.0247 | 0.0696 |
schreiber2014/default | 0.2009 | 0.3776 | 0.0294 | 0.0818 |
boeck2019/multi_task_hjdb | 0.2087 | 0.3903 | 0.0232 | 0.0647 |
boeck2019/multi_task | 0.2097 | 0.3884 | 0.0230 | 0.0648 |
schreiber2018/fcn | 0.2489 | 0.4233 | 0.0226 | 0.0664 |
echonest/version_3_2_1 | 0.2564 | 0.4061 | 0.0441 | 0.1004 |
schreiber2018/cnn | 0.2695 | 0.4335 | 0.0230 | 0.0708 |
gkiokas2012/default | 0.2734 | 0.4413 | 0.0273 | 0.0773 |
klapuri2006/percival2014 | 0.2786 | 0.4373 | 0.0295 | 0.0782 |
zplane/auftakt_v3 | 0.2810 | 0.4375 | 0.0427 | 0.1027 |
schreiber2018/ismir2018 | 0.2936 | 0.4457 | 0.0291 | 0.0824 |
boeck2015/tempodetector2016_default | 0.2956 | 0.4695 | 0.0217 | 0.0573 |
sun2021/default | 0.3082 | 0.4420 | 0.0317 | 0.0736 |
boeck2020/dar | 0.3113 | 0.4607 | 0.0175 | 0.0491 |
scheirer1998/percival2014 | 0.3280 | 0.4262 | 0.0811 | 0.1401 |
oliveira2010/ibt | 0.3481 | 0.4644 | 0.0443 | 0.0929 |
davies2009/mirex_qm_tempotracker | 0.3940 | 0.4985 | 0.0359 | 0.0670 |
Table 28: Mean AOE1/AOE2 for estimates compared to version 2.0 ordered by mean.
Raw data AOE1: CSV JSON LATEX PICKLE
Raw data AOE2: CSV JSON LATEX PICKLE
AOE1 distribution for 2.0
Figure 104: AOE1 for estimates compared to version 2.0. Shown are the mean AOE1 and an empirical distribution of the sample, using kernel density estimation (KDE).
CSV JSON LATEX PICKLE SVG PDF PNG
AOE2 distribution for 2.0
Figure 105: AOE2 for estimates compared to version 2.0. Shown are the mean AOE2 and an empirical distribution of the sample, using kernel density estimation (KDE).
CSV JSON LATEX PICKLE SVG PDF PNG
Mean AOE1/AOE2 Results for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI
Estimator | AOE1_MEAN | AOE1_STDEV | AOE2_MEAN | AOE2_STDEV |
---|---|---|---|---|
boeck2020/dar | 0.1383 | 0.3387 | 0.0168 | 0.0616 |
sun2021/default | 0.1715 | 0.3573 | 0.0302 | 0.0769 |
schreiber2018/ismir2018 | 0.2012 | 0.3844 | 0.0291 | 0.0873 |
schreiber2018/cnn | 0.2163 | 0.4023 | 0.0229 | 0.0733 |
boeck2015/tempodetector2016_default | 0.2167 | 0.4143 | 0.0209 | 0.0649 |
schreiber2018/fcn | 0.2320 | 0.4139 | 0.0206 | 0.0647 |
klapuri2006/percival2014 | 0.2683 | 0.4353 | 0.0233 | 0.0785 |
oliveira2010/ibt | 0.2702 | 0.4239 | 0.0410 | 0.0898 |
schreiber2017/ismir2017 | 0.2711 | 0.4371 | 0.0248 | 0.0811 |
boeck2019/multi_task | 0.2849 | 0.4470 | 0.0212 | 0.0708 |
davies2009/mirex_qm_tempotracker | 0.2851 | 0.4443 | 0.0365 | 0.0680 |
zplane/auftakt_v3 | 0.2867 | 0.4407 | 0.0393 | 0.1031 |
schreiber2014/default | 0.2896 | 0.4405 | 0.0250 | 0.0806 |
echonest/version_3_2_1 | 0.2920 | 0.4405 | 0.0415 | 0.1030 |
percival2014/stem | 0.2988 | 0.4546 | 0.0207 | 0.0703 |
boeck2019/multi_task_hjdb | 0.3119 | 0.4639 | 0.0218 | 0.0719 |
schreiber2017/mirex2017 | 0.3143 | 0.4677 | 0.0184 | 0.0671 |
gkiokas2012/default | 0.3276 | 0.4723 | 0.0261 | 0.0778 |
scheirer1998/percival2014 | 0.3983 | 0.4684 | 0.0770 | 0.1380 |
Table 29: Mean AOE1/AOE2 for estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI ordered by mean.
Raw data AOE1: CSV JSON LATEX PICKLE
Raw data AOE2: CSV JSON LATEX PICKLE
AOE1 distribution for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI
Figure 106: AOE1 for estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI. Shown are the mean AOE1 and an empirical distribution of the sample, using kernel density estimation (KDE).
CSV JSON LATEX PICKLE SVG PDF PNG
AOE2 distribution for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI
Figure 107: AOE2 for estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI. Shown are the mean AOE2 and an empirical distribution of the sample, using kernel density estimation (KDE).
CSV JSON LATEX PICKLE SVG PDF PNG
Mean AOE1/AOE2 Results for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI
Estimator | AOE1_MEAN | AOE1_STDEV | AOE2_MEAN | AOE2_STDEV |
---|---|---|---|---|
boeck2020/dar | 0.1367 | 0.3390 | 0.0155 | 0.0632 |
sun2021/default | 0.1708 | 0.3575 | 0.0294 | 0.0765 |
schreiber2018/ismir2018 | 0.2002 | 0.3848 | 0.0280 | 0.0882 |
schreiber2018/cnn | 0.2154 | 0.4030 | 0.0220 | 0.0736 |
boeck2015/tempodetector2016_default | 0.2164 | 0.4148 | 0.0206 | 0.0656 |
schreiber2018/fcn | 0.2309 | 0.4143 | 0.0197 | 0.0658 |
schreiber2017/ismir2017 | 0.2696 | 0.4378 | 0.0231 | 0.0820 |
oliveira2010/ibt | 0.2697 | 0.4244 | 0.0400 | 0.0892 |
klapuri2006/percival2014 | 0.2699 | 0.4345 | 0.0247 | 0.0781 |
boeck2019/multi_task | 0.2836 | 0.4470 | 0.0202 | 0.0720 |
zplane/auftakt_v3 | 0.2854 | 0.4413 | 0.0378 | 0.1036 |
davies2009/mirex_qm_tempotracker | 0.2855 | 0.4445 | 0.0368 | 0.0673 |
schreiber2014/default | 0.2877 | 0.4413 | 0.0227 | 0.0806 |
echonest/version_3_2_1 | 0.2908 | 0.4410 | 0.0403 | 0.1038 |
percival2014/stem | 0.2976 | 0.4550 | 0.0190 | 0.0708 |
boeck2019/multi_task_hjdb | 0.3108 | 0.4639 | 0.0211 | 0.0733 |
schreiber2017/mirex2017 | 0.3126 | 0.4684 | 0.0166 | 0.0681 |
gkiokas2012/default | 0.3268 | 0.4733 | 0.0250 | 0.0783 |
scheirer1998/percival2014 | 0.3981 | 0.4686 | 0.0767 | 0.1384 |
Table 30: Mean AOE1/AOE2 for estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI ordered by mean.
Raw data AOE1: CSV JSON LATEX PICKLE
Raw data AOE2: CSV JSON LATEX PICKLE
AOE1 distribution for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI
Figure 108: AOE1 for estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI. Shown are the mean AOE1 and an empirical distribution of the sample, using kernel density estimation (KDE).
CSV JSON LATEX PICKLE SVG PDF PNG
AOE2 distribution for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI
Figure 109: AOE2 for estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI. Shown are the mean AOE2 and an empirical distribution of the sample, using kernel density estimation (KDE).
CSV JSON LATEX PICKLE SVG PDF PNG
Significance of Differences
Estimator | boeck2015/tempodetector2016_default | boeck2019/multi_task | boeck2019/multi_task_hjdb | boeck2020/dar | davies2009/mirex_qm_tempotracker | echonest/version_3_2_1 | gkiokas2012/default | klapuri2006/percival2014 | oliveira2010/ibt | percival2014/stem | scheirer1998/percival2014 | schreiber2014/default | schreiber2017/ismir2017 | schreiber2017/mirex2017 | schreiber2018/cnn | schreiber2018/fcn | schreiber2018/ismir2018 | sun2021/default | zplane/auftakt_v3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
boeck2015/tempodetector2016_default | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.9391 | 0.2842 | 0.1722 | 0.0002 | 0.0000 |
boeck2019/multi_task | 0.0000 | 1.0000 | 0.0002 | 0.0000 | 0.9005 | 0.5942 | 0.0047 | 0.3470 | 0.3703 | 0.2949 | 0.0000 | 0.7233 | 0.2313 | 0.0249 | 0.0000 | 0.0002 | 0.0000 | 0.0000 | 0.9020 |
boeck2019/multi_task_hjdb | 0.0000 | 0.0002 | 1.0000 | 0.0000 | 0.1625 | 0.1348 | 0.3083 | 0.0076 | 0.0133 | 0.3092 | 0.0000 | 0.0552 | 0.0010 | 0.8955 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0857 |
boeck2020/dar | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0015 | 0.0000 |
davies2009/mirex_qm_tempotracker | 0.0000 | 0.9005 | 0.1625 | 0.0000 | 1.0000 | 0.7506 | 0.0102 | 0.1564 | 0.1033 | 0.4191 | 0.0000 | 0.8895 | 0.2963 | 0.1219 | 0.0000 | 0.0004 | 0.0000 | 0.0000 | 0.9922 |
echonest/version_3_2_1 | 0.0000 | 0.5942 | 0.1348 | 0.0000 | 0.7506 | 1.0000 | 0.0130 | 0.1110 | 0.1297 | 0.6375 | 0.0000 | 0.7522 | 0.0823 | 0.1170 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.6533 |
gkiokas2012/default | 0.0000 | 0.0047 | 0.3083 | 0.0000 | 0.0102 | 0.0130 | 1.0000 | 0.0001 | 0.0002 | 0.0305 | 0.0000 | 0.0032 | 0.0000 | 0.3301 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0034 |
klapuri2006/percival2014 | 0.0001 | 0.3470 | 0.0076 | 0.0000 | 0.1564 | 0.1110 | 0.0001 | 1.0000 | 0.9828 | 0.0107 | 0.0000 | 0.1359 | 0.9854 | 0.0029 | 0.0001 | 0.0047 | 0.0000 | 0.0000 | 0.1374 |
oliveira2010/ibt | 0.0001 | 0.3703 | 0.0133 | 0.0000 | 0.1033 | 0.1297 | 0.0002 | 0.9828 | 1.0000 | 0.0380 | 0.0000 | 0.1984 | 0.9986 | 0.0082 | 0.0001 | 0.0082 | 0.0000 | 0.0000 | 0.1408 |
percival2014/stem | 0.0000 | 0.2949 | 0.3092 | 0.0000 | 0.4191 | 0.6375 | 0.0305 | 0.0107 | 0.0380 | 1.0000 | 0.0000 | 0.3438 | 0.0141 | 0.2379 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2803 |
scheirer1998/percival2014 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2014/default | 0.0000 | 0.7233 | 0.0552 | 0.0000 | 0.8895 | 0.7522 | 0.0032 | 0.1359 | 0.1984 | 0.3438 | 0.0000 | 1.0000 | 0.0636 | 0.0382 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.8514 |
schreiber2017/ismir2017 | 0.0001 | 0.2313 | 0.0010 | 0.0000 | 0.2963 | 0.0823 | 0.0000 | 0.9854 | 0.9986 | 0.0141 | 0.0000 | 0.0636 | 1.0000 | 0.0001 | 0.0000 | 0.0026 | 0.0000 | 0.0000 | 0.1848 |
schreiber2017/mirex2017 | 0.0000 | 0.0249 | 0.8955 | 0.0000 | 0.1219 | 0.1170 | 0.3301 | 0.0029 | 0.0082 | 0.2379 | 0.0000 | 0.0382 | 0.0001 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0559 |
schreiber2018/cnn | 0.9391 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.1895 | 0.1780 | 0.0001 | 0.0000 |
schreiber2018/fcn | 0.2842 | 0.0002 | 0.0000 | 0.0000 | 0.0004 | 0.0000 | 0.0000 | 0.0047 | 0.0082 | 0.0000 | 0.0000 | 0.0000 | 0.0026 | 0.0000 | 0.1895 | 1.0000 | 0.0112 | 0.0000 | 0.0001 |
schreiber2018/ismir2018 | 0.1722 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1780 | 0.0112 | 1.0000 | 0.0075 | 0.0000 |
sun2021/default | 0.0002 | 0.0000 | 0.0000 | 0.0015 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0075 | 1.0000 | 0.0000 |
zplane/auftakt_v3 | 0.0000 | 0.9020 | 0.0857 | 0.0000 | 0.9922 | 0.6533 | 0.0034 | 0.1374 | 0.1408 | 0.2803 | 0.0000 | 0.8514 | 0.1848 | 0.0559 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 1.0000 |
Table 31: Paired t-test p-values, using reference annotations GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI as groundtruth with AOE1. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.
Estimator | boeck2015/tempodetector2016_default | boeck2019/multi_task | boeck2019/multi_task_hjdb | boeck2020/dar | davies2009/mirex_qm_tempotracker | echonest/version_3_2_1 | gkiokas2012/default | klapuri2006/percival2014 | oliveira2010/ibt | percival2014/stem | scheirer1998/percival2014 | schreiber2014/default | schreiber2017/ismir2017 | schreiber2017/mirex2017 | schreiber2018/cnn | schreiber2018/fcn | schreiber2018/ismir2018 | sun2021/default | zplane/auftakt_v3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
boeck2015/tempodetector2016_default | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0002 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.9725 | 0.2597 | 0.1900 | 0.0002 | 0.0000 |
boeck2019/multi_task | 0.0000 | 1.0000 | 0.0002 | 0.0000 | 0.9814 | 0.5990 | 0.0050 | 0.2563 | 0.3442 | 0.2999 | 0.0000 | 0.6847 | 0.2370 | 0.0229 | 0.0000 | 0.0002 | 0.0000 | 0.0000 | 0.9018 |
boeck2019/multi_task_hjdb | 0.0000 | 0.0002 | 1.0000 | 0.0000 | 0.1380 | 0.1368 | 0.3149 | 0.0045 | 0.0120 | 0.3120 | 0.0000 | 0.0636 | 0.0011 | 0.8589 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0880 |
boeck2020/dar | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0019 | 0.0000 |
davies2009/mirex_qm_tempotracker | 0.0000 | 0.9814 | 0.1380 | 0.0000 | 1.0000 | 0.6708 | 0.0080 | 0.1306 | 0.1275 | 0.3598 | 0.0000 | 0.7730 | 0.3598 | 0.0946 | 0.0000 | 0.0005 | 0.0000 | 0.0000 | 0.9004 |
echonest/version_3_2_1 | 0.0000 | 0.5990 | 0.1368 | 0.0000 | 0.6708 | 1.0000 | 0.0138 | 0.0727 | 0.1179 | 0.6396 | 0.0000 | 0.7952 | 0.0859 | 0.1079 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.6583 |
gkiokas2012/default | 0.0000 | 0.0050 | 0.3149 | 0.0000 | 0.0080 | 0.0138 | 1.0000 | 0.0000 | 0.0002 | 0.0322 | 0.0000 | 0.0039 | 0.0000 | 0.3591 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0036 |
klapuri2006/percival2014 | 0.0002 | 0.2563 | 0.0045 | 0.0000 | 0.1306 | 0.0727 | 0.0000 | 1.0000 | 0.8308 | 0.0051 | 0.0000 | 0.0750 | 0.8093 | 0.0013 | 0.0001 | 0.0084 | 0.0000 | 0.0000 | 0.0787 |
oliveira2010/ibt | 0.0001 | 0.3442 | 0.0120 | 0.0000 | 0.1275 | 0.1179 | 0.0002 | 0.8308 | 1.0000 | 0.0337 | 0.0000 | 0.1658 | 0.9453 | 0.0065 | 0.0001 | 0.0091 | 0.0000 | 0.0000 | 0.1224 |
percival2014/stem | 0.0000 | 0.2999 | 0.3120 | 0.0000 | 0.3598 | 0.6396 | 0.0322 | 0.0051 | 0.0337 | 1.0000 | 0.0000 | 0.3791 | 0.0152 | 0.2207 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2848 |
scheirer1998/percival2014 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2014/default | 0.0000 | 0.6847 | 0.0636 | 0.0000 | 0.7730 | 0.7952 | 0.0039 | 0.0750 | 0.1658 | 0.3791 | 0.0000 | 1.0000 | 0.0572 | 0.0392 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.8139 |
schreiber2017/ismir2017 | 0.0000 | 0.2370 | 0.0011 | 0.0000 | 0.3598 | 0.0859 | 0.0000 | 0.8093 | 0.9453 | 0.0152 | 0.0000 | 0.0572 | 1.0000 | 0.0001 | 0.0000 | 0.0023 | 0.0000 | 0.0000 | 0.1892 |
schreiber2017/mirex2017 | 0.0000 | 0.0229 | 0.8589 | 0.0000 | 0.0946 | 0.1079 | 0.3591 | 0.0013 | 0.0065 | 0.2207 | 0.0000 | 0.0392 | 0.0001 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0519 |
schreiber2018/cnn | 0.9725 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.1830 | 0.1824 | 0.0001 | 0.0000 |
schreiber2018/fcn | 0.2597 | 0.0002 | 0.0000 | 0.0000 | 0.0005 | 0.0000 | 0.0000 | 0.0084 | 0.0091 | 0.0000 | 0.0000 | 0.0000 | 0.0023 | 0.0000 | 0.1830 | 1.0000 | 0.0110 | 0.0000 | 0.0001 |
schreiber2018/ismir2018 | 0.1900 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1824 | 0.0110 | 1.0000 | 0.0068 | 0.0000 |
sun2021/default | 0.0002 | 0.0000 | 0.0000 | 0.0019 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0068 | 1.0000 | 0.0000 |
zplane/auftakt_v3 | 0.0000 | 0.9018 | 0.0880 | 0.0000 | 0.9004 | 0.6583 | 0.0036 | 0.0787 | 0.1224 | 0.2848 | 0.0000 | 0.8139 | 0.1892 | 0.0519 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 1.0000 |
Table 32: Paired t-test p-values, using reference annotations GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI as groundtruth with AOE1. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.
Estimator | boeck2015/tempodetector2016_default | boeck2019/multi_task | boeck2019/multi_task_hjdb | boeck2020/dar | davies2009/mirex_qm_tempotracker | echonest/version_3_2_1 | gkiokas2012/default | klapuri2006/percival2014 | oliveira2010/ibt | percival2014/stem | scheirer1998/percival2014 | schreiber2014/default | schreiber2017/ismir2017 | schreiber2017/mirex2017 | schreiber2018/cnn | schreiber2018/fcn | schreiber2018/ismir2018 | sun2021/default | zplane/auftakt_v3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
boeck2015/tempodetector2016_default | 1.0000 | 0.0000 | 0.0000 | 0.2078 | 0.0000 | 0.0079 | 0.1432 | 0.2123 | 0.0001 | 0.0000 | 0.0434 | 0.0000 | 0.0000 | 0.0000 | 0.0362 | 0.0005 | 0.8661 | 0.3020 | 0.2708 |
boeck2019/multi_task | 0.0000 | 1.0000 | 0.8940 | 0.0000 | 0.0000 | 0.0003 | 0.0000 | 0.0000 | 0.0000 | 0.4193 | 0.0000 | 0.4388 | 0.3052 | 0.0000 | 0.0000 | 0.0053 | 0.0000 | 0.0000 | 0.0000 |
boeck2019/multi_task_hjdb | 0.0000 | 0.8940 | 1.0000 | 0.0000 | 0.0000 | 0.0003 | 0.0000 | 0.0000 | 0.0000 | 0.4710 | 0.0000 | 0.5132 | 0.3703 | 0.0000 | 0.0001 | 0.0064 | 0.0000 | 0.0000 | 0.0000 |
boeck2020/dar | 0.2078 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0002 | 0.0206 | 0.0260 | 0.0115 | 0.0000 | 0.2741 | 0.0000 | 0.0000 | 0.0000 | 0.0007 | 0.0000 | 0.1219 | 0.7688 | 0.0431 |
davies2009/mirex_qm_tempotracker | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
echonest/version_3_2_1 | 0.0079 | 0.0003 | 0.0003 | 0.0002 | 0.0000 | 1.0000 | 0.2191 | 0.0959 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.3847 | 0.5540 | 0.0078 | 0.0002 | 0.0695 |
gkiokas2012/default | 0.1432 | 0.0000 | 0.0000 | 0.0206 | 0.0000 | 0.2191 | 1.0000 | 0.7094 | 0.0000 | 0.0000 | 0.0003 | 0.0000 | 0.0000 | 0.0000 | 0.7905 | 0.1013 | 0.1783 | 0.0218 | 0.5884 |
klapuri2006/percival2014 | 0.2123 | 0.0000 | 0.0000 | 0.0260 | 0.0000 | 0.0959 | 0.7094 | 1.0000 | 0.0000 | 0.0000 | 0.0004 | 0.0000 | 0.0000 | 0.0000 | 0.5017 | 0.0309 | 0.1960 | 0.0337 | 0.8201 |
oliveira2010/ibt | 0.0001 | 0.0000 | 0.0000 | 0.0115 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.2211 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0033 | 0.0000 |
percival2014/stem | 0.0000 | 0.4193 | 0.4710 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.8716 | 0.8769 | 0.0000 | 0.0000 | 0.0002 | 0.0000 | 0.0000 | 0.0000 |
scheirer1998/percival2014 | 0.0434 | 0.0000 | 0.0000 | 0.2741 | 0.0001 | 0.0000 | 0.0003 | 0.0004 | 0.2211 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0002 | 0.0000 | 0.0181 | 0.1872 | 0.0009 |
schreiber2014/default | 0.0000 | 0.4388 | 0.5132 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.8716 | 0.0000 | 1.0000 | 0.7199 | 0.0000 | 0.0000 | 0.0002 | 0.0000 | 0.0000 | 0.0000 |
schreiber2017/ismir2017 | 0.0000 | 0.3052 | 0.3703 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.8769 | 0.0000 | 0.7199 | 1.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 |
schreiber2017/mirex2017 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2018/cnn | 0.0362 | 0.0000 | 0.0001 | 0.0007 | 0.0000 | 0.3847 | 0.7905 | 0.5017 | 0.0000 | 0.0000 | 0.0002 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0819 | 0.0326 | 0.0009 | 0.3906 |
schreiber2018/fcn | 0.0005 | 0.0053 | 0.0064 | 0.0000 | 0.0000 | 0.5540 | 0.1013 | 0.0309 | 0.0000 | 0.0002 | 0.0000 | 0.0002 | 0.0001 | 0.0000 | 0.0819 | 1.0000 | 0.0002 | 0.0000 | 0.0224 |
schreiber2018/ismir2018 | 0.8661 | 0.0000 | 0.0000 | 0.1219 | 0.0000 | 0.0078 | 0.1783 | 0.1960 | 0.0000 | 0.0000 | 0.0181 | 0.0000 | 0.0000 | 0.0000 | 0.0326 | 0.0002 | 1.0000 | 0.1792 | 0.3066 |
sun2021/default | 0.3020 | 0.0000 | 0.0000 | 0.7688 | 0.0000 | 0.0002 | 0.0218 | 0.0337 | 0.0033 | 0.0000 | 0.1872 | 0.0000 | 0.0000 | 0.0000 | 0.0009 | 0.0000 | 0.1792 | 1.0000 | 0.0479 |
zplane/auftakt_v3 | 0.2708 | 0.0000 | 0.0000 | 0.0431 | 0.0000 | 0.0695 | 0.5884 | 0.8201 | 0.0000 | 0.0000 | 0.0009 | 0.0000 | 0.0000 | 0.0000 | 0.3906 | 0.0224 | 0.3066 | 0.0479 | 1.0000 |
Table 33: Paired t-test p-values, using reference annotations 2.0 as groundtruth with AOE1. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.
Estimator | boeck2015/tempodetector2016_default | boeck2019/multi_task | boeck2019/multi_task_hjdb | boeck2020/dar | davies2009/mirex_qm_tempotracker | echonest/version_3_2_1 | gkiokas2012/default | klapuri2006/percival2014 | oliveira2010/ibt | percival2014/stem | scheirer1998/percival2014 | schreiber2014/default | schreiber2017/ismir2017 | schreiber2017/mirex2017 | schreiber2018/cnn | schreiber2018/fcn | schreiber2018/ismir2018 | sun2021/default | zplane/auftakt_v3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
boeck2015/tempodetector2016_default | 1.0000 | 0.0000 | 0.0000 | 0.3794 | 0.0000 | 0.0010 | 0.0712 | 0.2748 | 0.0001 | 0.0000 | 0.0407 | 0.0000 | 0.0000 | 0.0000 | 0.0184 | 0.0002 | 0.7333 | 0.4035 | 0.2602 |
boeck2019/multi_task | 0.0000 | 1.0000 | 0.4991 | 0.0000 | 0.0000 | 0.0003 | 0.0000 | 0.0000 | 0.0000 | 0.7256 | 0.0000 | 0.7856 | 0.6012 | 0.0000 | 0.0000 | 0.0014 | 0.0000 | 0.0000 | 0.0000 |
boeck2019/multi_task_hjdb | 0.0000 | 0.4991 | 1.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.9808 | 0.0000 | 0.8806 | 0.9162 | 0.0000 | 0.0000 | 0.0007 | 0.0000 | 0.0000 | 0.0000 |
boeck2020/dar | 0.3794 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0001 | 0.0219 | 0.0858 | 0.0035 | 0.0000 | 0.1635 | 0.0000 | 0.0000 | 0.0000 | 0.0011 | 0.0000 | 0.1861 | 0.9391 | 0.0842 |
davies2009/mirex_qm_tempotracker | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
echonest/version_3_2_1 | 0.0010 | 0.0003 | 0.0001 | 0.0001 | 0.0000 | 1.0000 | 0.1246 | 0.0121 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1910 | 0.9167 | 0.0014 | 0.0000 | 0.0145 |
gkiokas2012/default | 0.0712 | 0.0000 | 0.0000 | 0.0219 | 0.0000 | 0.1246 | 1.0000 | 0.3734 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.8870 | 0.1392 | 0.1207 | 0.0146 | 0.3790 |
klapuri2006/percival2014 | 0.2748 | 0.0000 | 0.0000 | 0.0858 | 0.0000 | 0.0121 | 0.3734 | 1.0000 | 0.0000 | 0.0000 | 0.0007 | 0.0000 | 0.0000 | 0.0000 | 0.2874 | 0.0123 | 0.3514 | 0.0806 | 0.9923 |
oliveira2010/ibt | 0.0001 | 0.0000 | 0.0000 | 0.0035 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.2105 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0015 | 0.0000 |
percival2014/stem | 0.0000 | 0.7256 | 0.9808 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.8121 | 0.8837 | 0.0000 | 0.0000 | 0.0002 | 0.0000 | 0.0000 | 0.0000 |
scheirer1998/percival2014 | 0.0407 | 0.0000 | 0.0000 | 0.1635 | 0.0000 | 0.0000 | 0.0001 | 0.0007 | 0.2105 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0116 | 0.1360 | 0.0008 |
schreiber2014/default | 0.0000 | 0.7856 | 0.8806 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.8121 | 0.0000 | 1.0000 | 0.6671 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 |
schreiber2017/ismir2017 | 0.0000 | 0.6012 | 0.9162 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.8837 | 0.0000 | 0.6671 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2017/mirex2017 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2018/cnn | 0.0184 | 0.0000 | 0.0000 | 0.0011 | 0.0000 | 0.1910 | 0.8870 | 0.2874 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0916 | 0.0246 | 0.0006 | 0.2835 |
schreiber2018/fcn | 0.0002 | 0.0014 | 0.0007 | 0.0000 | 0.0000 | 0.9167 | 0.1392 | 0.0123 | 0.0000 | 0.0002 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0916 | 1.0000 | 0.0002 | 0.0000 | 0.0146 |
schreiber2018/ismir2018 | 0.7333 | 0.0000 | 0.0000 | 0.1861 | 0.0000 | 0.0014 | 0.1207 | 0.3514 | 0.0000 | 0.0000 | 0.0116 | 0.0000 | 0.0000 | 0.0000 | 0.0246 | 0.0002 | 1.0000 | 0.1855 | 0.3778 |
sun2021/default | 0.4035 | 0.0000 | 0.0000 | 0.9391 | 0.0000 | 0.0000 | 0.0146 | 0.0806 | 0.0015 | 0.0000 | 0.1360 | 0.0000 | 0.0000 | 0.0000 | 0.0006 | 0.0000 | 0.1855 | 1.0000 | 0.0708 |
zplane/auftakt_v3 | 0.2602 | 0.0000 | 0.0000 | 0.0842 | 0.0000 | 0.0145 | 0.3790 | 0.9923 | 0.0000 | 0.0000 | 0.0008 | 0.0000 | 0.0000 | 0.0000 | 0.2835 | 0.0146 | 0.3778 | 0.0708 | 1.0000 |
Table 34: Paired t-test p-values, using reference annotations 1.0 as groundtruth with AOE1. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.
Estimator | boeck2015/tempodetector2016_default | boeck2019/multi_task | boeck2019/multi_task_hjdb | boeck2020/dar | davies2009/mirex_qm_tempotracker | echonest/version_3_2_1 | gkiokas2012/default | klapuri2006/percival2014 | oliveira2010/ibt | percival2014/stem | scheirer1998/percival2014 | schreiber2014/default | schreiber2017/ismir2017 | schreiber2017/mirex2017 | schreiber2018/cnn | schreiber2018/fcn | schreiber2018/ismir2018 | sun2021/default | zplane/auftakt_v3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
boeck2015/tempodetector2016_default | 1.0000 | 0.9802 | 0.6937 | 0.0055 | 0.0000 | 0.0000 | 0.0609 | 0.1140 | 0.0000 | 0.4637 | 0.0000 | 0.4024 | 0.3194 | 0.0787 | 0.5312 | 0.6648 | 0.0029 | 0.0000 | 0.0000 |
boeck2019/multi_task | 0.9802 | 1.0000 | 0.2592 | 0.0046 | 0.0000 | 0.0000 | 0.0713 | 0.1099 | 0.0000 | 0.4914 | 0.0000 | 0.3660 | 0.3016 | 0.0992 | 0.5797 | 0.6967 | 0.0071 | 0.0000 | 0.0000 |
boeck2019/multi_task_hjdb | 0.6937 | 0.2592 | 1.0000 | 0.0012 | 0.0000 | 0.0000 | 0.1400 | 0.2160 | 0.0000 | 0.2963 | 0.0000 | 0.5859 | 0.4816 | 0.0385 | 0.8438 | 0.4281 | 0.0171 | 0.0002 | 0.0000 |
boeck2020/dar | 0.0055 | 0.0046 | 0.0012 | 1.0000 | 0.0000 | 0.0000 | 0.0002 | 0.0006 | 0.0000 | 0.1561 | 0.0000 | 0.0073 | 0.0038 | 0.7214 | 0.0099 | 0.0619 | 0.0000 | 0.0000 | 0.0000 |
davies2009/mirex_qm_tempotracker | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.2834 | 0.0000 | 0.0000 | 0.2863 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0022 | 0.0049 | 0.7531 |
echonest/version_3_2_1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2834 | 1.0000 | 0.0000 | 0.0000 | 0.9451 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0002 | 0.0003 | 0.4972 |
gkiokas2012/default | 0.0609 | 0.0713 | 0.1400 | 0.0002 | 0.0000 | 0.0000 | 1.0000 | 0.9165 | 0.0000 | 0.0199 | 0.0000 | 0.3939 | 0.5209 | 0.0014 | 0.2768 | 0.0408 | 0.2785 | 0.0789 | 0.0002 |
klapuri2006/percival2014 | 0.1140 | 0.1099 | 0.2160 | 0.0006 | 0.0000 | 0.0000 | 0.9165 | 1.0000 | 0.0000 | 0.0302 | 0.0000 | 0.4501 | 0.5844 | 0.0029 | 0.3249 | 0.0392 | 0.2167 | 0.0675 | 0.0000 |
oliveira2010/ibt | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2863 | 0.9451 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0002 | 0.0008 | 0.4984 |
percival2014/stem | 0.4637 | 0.4914 | 0.2963 | 0.1561 | 0.0000 | 0.0000 | 0.0199 | 0.0302 | 0.0000 | 1.0000 | 0.0000 | 0.1285 | 0.1039 | 0.3113 | 0.1855 | 0.7800 | 0.0004 | 0.0000 | 0.0000 |
scheirer1998/percival2014 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2014/default | 0.4024 | 0.3660 | 0.5859 | 0.0073 | 0.0000 | 0.0000 | 0.3939 | 0.4501 | 0.0000 | 0.1285 | 0.0000 | 1.0000 | 0.8192 | 0.0108 | 0.7703 | 0.2426 | 0.0489 | 0.0029 | 0.0000 |
schreiber2017/ismir2017 | 0.3194 | 0.3016 | 0.4816 | 0.0038 | 0.0000 | 0.0000 | 0.5209 | 0.5844 | 0.0000 | 0.1039 | 0.0000 | 0.8192 | 1.0000 | 0.0018 | 0.6216 | 0.1590 | 0.0611 | 0.0092 | 0.0000 |
schreiber2017/mirex2017 | 0.0787 | 0.0992 | 0.0385 | 0.7214 | 0.0000 | 0.0000 | 0.0014 | 0.0029 | 0.0000 | 0.3113 | 0.0000 | 0.0108 | 0.0018 | 1.0000 | 0.0174 | 0.1830 | 0.0000 | 0.0000 | 0.0000 |
schreiber2018/cnn | 0.5312 | 0.5797 | 0.8438 | 0.0099 | 0.0000 | 0.0000 | 0.2768 | 0.3249 | 0.0000 | 0.1855 | 0.0000 | 0.7703 | 0.6216 | 0.0174 | 1.0000 | 0.2625 | 0.0052 | 0.0017 | 0.0000 |
schreiber2018/fcn | 0.6648 | 0.6967 | 0.4281 | 0.0619 | 0.0000 | 0.0000 | 0.0408 | 0.0392 | 0.0000 | 0.7800 | 0.0000 | 0.2426 | 0.1590 | 0.1830 | 0.2625 | 1.0000 | 0.0008 | 0.0000 | 0.0000 |
schreiber2018/ismir2018 | 0.0029 | 0.0071 | 0.0171 | 0.0000 | 0.0022 | 0.0002 | 0.2785 | 0.2167 | 0.0002 | 0.0004 | 0.0000 | 0.0489 | 0.0611 | 0.0000 | 0.0052 | 0.0008 | 1.0000 | 0.4726 | 0.0036 |
sun2021/default | 0.0000 | 0.0000 | 0.0002 | 0.0000 | 0.0049 | 0.0003 | 0.0789 | 0.0675 | 0.0008 | 0.0000 | 0.0000 | 0.0029 | 0.0092 | 0.0000 | 0.0017 | 0.0000 | 0.4726 | 1.0000 | 0.0086 |
zplane/auftakt_v3 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.7531 | 0.4972 | 0.0002 | 0.0000 | 0.4984 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0036 | 0.0086 | 1.0000 |
Table 35: Paired t-test p-values, using reference annotations GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI as groundtruth with AOE2. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.
Estimator | boeck2015/tempodetector2016_default | boeck2019/multi_task | boeck2019/multi_task_hjdb | boeck2020/dar | davies2009/mirex_qm_tempotracker | echonest/version_3_2_1 | gkiokas2012/default | klapuri2006/percival2014 | oliveira2010/ibt | percival2014/stem | scheirer1998/percival2014 | schreiber2014/default | schreiber2017/ismir2017 | schreiber2017/mirex2017 | schreiber2018/cnn | schreiber2018/fcn | schreiber2018/ismir2018 | sun2021/default | zplane/auftakt_v3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
boeck2015/tempodetector2016_default | 1.0000 | 0.7648 | 0.5676 | 0.0275 | 0.0000 | 0.0000 | 0.0275 | 0.3498 | 0.0000 | 0.9268 | 0.0000 | 0.0972 | 0.1262 | 0.2603 | 0.3670 | 0.8952 | 0.0012 | 0.0000 | 0.0000 |
boeck2019/multi_task | 0.7648 | 1.0000 | 0.4679 | 0.0082 | 0.0000 | 0.0000 | 0.0639 | 0.4758 | 0.0000 | 0.7131 | 0.0000 | 0.1400 | 0.1914 | 0.1787 | 0.5964 | 0.6874 | 0.0066 | 0.0000 | 0.0000 |
boeck2019/multi_task_hjdb | 0.5676 | 0.4679 | 1.0000 | 0.0043 | 0.0000 | 0.0000 | 0.0986 | 0.6238 | 0.0000 | 0.5488 | 0.0000 | 0.2102 | 0.2665 | 0.1048 | 0.7634 | 0.5073 | 0.0116 | 0.0002 | 0.0000 |
boeck2020/dar | 0.0275 | 0.0082 | 0.0043 | 1.0000 | 0.0000 | 0.0000 | 0.0003 | 0.0159 | 0.0000 | 0.1076 | 0.0000 | 0.0019 | 0.0023 | 0.5872 | 0.0160 | 0.0881 | 0.0000 | 0.0000 | 0.0000 |
davies2009/mirex_qm_tempotracker | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.1251 | 0.0001 | 0.0000 | 0.1408 | 0.0000 | 0.0000 | 0.0001 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0109 | 0.0199 | 0.3996 |
echonest/version_3_2_1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1251 | 1.0000 | 0.0000 | 0.0000 | 0.8957 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0001 | 0.5477 |
gkiokas2012/default | 0.0275 | 0.0639 | 0.0986 | 0.0003 | 0.0001 | 0.0000 | 1.0000 | 0.3337 | 0.0000 | 0.0357 | 0.0000 | 0.6938 | 0.6567 | 0.0031 | 0.2531 | 0.0348 | 0.2910 | 0.1071 | 0.0001 |
klapuri2006/percival2014 | 0.3498 | 0.4758 | 0.6238 | 0.0159 | 0.0000 | 0.0000 | 0.3337 | 1.0000 | 0.0000 | 0.3200 | 0.0000 | 0.5066 | 0.5885 | 0.0664 | 0.8823 | 0.2670 | 0.0364 | 0.0094 | 0.0000 |
oliveira2010/ibt | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1408 | 0.8957 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0002 | 0.0007 | 0.6048 |
percival2014/stem | 0.9268 | 0.7131 | 0.5488 | 0.1076 | 0.0000 | 0.0000 | 0.0357 | 0.3200 | 0.0000 | 1.0000 | 0.0000 | 0.0720 | 0.1033 | 0.3133 | 0.3289 | 0.9698 | 0.0010 | 0.0000 | 0.0000 |
scheirer1998/percival2014 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2014/default | 0.0972 | 0.1400 | 0.2102 | 0.0019 | 0.0001 | 0.0000 | 0.6938 | 0.5066 | 0.0000 | 0.0720 | 0.0000 | 1.0000 | 0.9126 | 0.0051 | 0.3887 | 0.0868 | 0.1320 | 0.0213 | 0.0000 |
schreiber2017/ismir2017 | 0.1262 | 0.1914 | 0.2665 | 0.0023 | 0.0001 | 0.0000 | 0.6567 | 0.5885 | 0.0000 | 0.1033 | 0.0000 | 0.9126 | 1.0000 | 0.0018 | 0.4191 | 0.0888 | 0.1012 | 0.0235 | 0.0000 |
schreiber2017/mirex2017 | 0.2603 | 0.1787 | 0.1048 | 0.5872 | 0.0000 | 0.0000 | 0.0031 | 0.0664 | 0.0000 | 0.3133 | 0.0000 | 0.0051 | 0.0018 | 1.0000 | 0.0433 | 0.3166 | 0.0000 | 0.0000 | 0.0000 |
schreiber2018/cnn | 0.3670 | 0.5964 | 0.7634 | 0.0160 | 0.0000 | 0.0000 | 0.2531 | 0.8823 | 0.0000 | 0.3289 | 0.0000 | 0.3887 | 0.4191 | 0.0433 | 1.0000 | 0.2688 | 0.0045 | 0.0022 | 0.0000 |
schreiber2018/fcn | 0.8952 | 0.6874 | 0.5073 | 0.0881 | 0.0000 | 0.0000 | 0.0348 | 0.2670 | 0.0000 | 0.9698 | 0.0000 | 0.0868 | 0.0888 | 0.3166 | 0.2688 | 1.0000 | 0.0007 | 0.0000 | 0.0000 |
schreiber2018/ismir2018 | 0.0012 | 0.0066 | 0.0116 | 0.0000 | 0.0109 | 0.0001 | 0.2910 | 0.0364 | 0.0002 | 0.0010 | 0.0000 | 0.1320 | 0.1012 | 0.0000 | 0.0045 | 0.0007 | 1.0000 | 0.5398 | 0.0023 |
sun2021/default | 0.0000 | 0.0000 | 0.0002 | 0.0000 | 0.0199 | 0.0001 | 0.1071 | 0.0094 | 0.0007 | 0.0000 | 0.0000 | 0.0213 | 0.0235 | 0.0000 | 0.0022 | 0.0000 | 0.5398 | 1.0000 | 0.0044 |
zplane/auftakt_v3 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.3996 | 0.5477 | 0.0001 | 0.0000 | 0.6048 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0023 | 0.0044 | 1.0000 |
Table 36: Paired t-test p-values, using reference annotations GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI as groundtruth with AOE2. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.
Estimator | boeck2015/tempodetector2016_default | boeck2019/multi_task | boeck2019/multi_task_hjdb | boeck2020/dar | davies2009/mirex_qm_tempotracker | echonest/version_3_2_1 | gkiokas2012/default | klapuri2006/percival2014 | oliveira2010/ibt | percival2014/stem | scheirer1998/percival2014 | schreiber2014/default | schreiber2017/ismir2017 | schreiber2017/mirex2017 | schreiber2018/cnn | schreiber2018/fcn | schreiber2018/ismir2018 | sun2021/default | zplane/auftakt_v3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
boeck2015/tempodetector2016_default | 1.0000 | 0.5391 | 0.4810 | 0.0166 | 0.0000 | 0.0000 | 0.0181 | 0.0033 | 0.0000 | 0.1781 | 0.0000 | 0.0021 | 0.1356 | 0.0040 | 0.5395 | 0.6931 | 0.0040 | 0.0000 | 0.0000 |
boeck2019/multi_task | 0.5391 | 1.0000 | 0.7787 | 0.0034 | 0.0000 | 0.0000 | 0.0992 | 0.0160 | 0.0000 | 0.4864 | 0.0000 | 0.0078 | 0.3663 | 0.0021 | 0.9942 | 0.8443 | 0.0283 | 0.0001 | 0.0000 |
boeck2019/multi_task_hjdb | 0.4810 | 0.7787 | 1.0000 | 0.0024 | 0.0000 | 0.0000 | 0.1182 | 0.0220 | 0.0000 | 0.5459 | 0.0000 | 0.0090 | 0.3983 | 0.0010 | 0.9308 | 0.7686 | 0.0319 | 0.0002 | 0.0000 |
boeck2020/dar | 0.0166 | 0.0034 | 0.0024 | 1.0000 | 0.0000 | 0.0000 | 0.0002 | 0.0000 | 0.0000 | 0.0009 | 0.0000 | 0.0000 | 0.0005 | 0.4784 | 0.0159 | 0.0180 | 0.0000 | 0.0000 | 0.0000 |
davies2009/mirex_qm_tempotracker | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0125 | 0.0021 | 0.0141 | 0.0056 | 0.0000 | 0.0000 | 0.0268 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0197 | 0.1279 | 0.0439 |
echonest/version_3_2_1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0125 | 1.0000 | 0.0000 | 0.0000 | 0.9561 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.6915 |
gkiokas2012/default | 0.0181 | 0.0992 | 0.1182 | 0.0002 | 0.0021 | 0.0000 | 1.0000 | 0.4601 | 0.0000 | 0.3299 | 0.0000 | 0.4510 | 0.4469 | 0.0000 | 0.1133 | 0.0767 | 0.5366 | 0.1098 | 0.0000 |
klapuri2006/percival2014 | 0.0033 | 0.0160 | 0.0220 | 0.0000 | 0.0141 | 0.0000 | 0.4601 | 1.0000 | 0.0000 | 0.0646 | 0.0000 | 0.9685 | 0.1169 | 0.0000 | 0.0197 | 0.0057 | 0.8812 | 0.4171 | 0.0000 |
oliveira2010/ibt | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0056 | 0.9561 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.6091 |
percival2014/stem | 0.1781 | 0.4864 | 0.5459 | 0.0009 | 0.0000 | 0.0000 | 0.3299 | 0.0646 | 0.0000 | 1.0000 | 0.0000 | 0.0664 | 0.8375 | 0.0001 | 0.4215 | 0.3503 | 0.0660 | 0.0026 | 0.0000 |
scheirer1998/percival2014 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2014/default | 0.0021 | 0.0078 | 0.0090 | 0.0000 | 0.0268 | 0.0000 | 0.4510 | 0.9685 | 0.0000 | 0.0664 | 0.0000 | 1.0000 | 0.0270 | 0.0000 | 0.0093 | 0.0088 | 0.9116 | 0.3197 | 0.0000 |
schreiber2017/ismir2017 | 0.1356 | 0.3663 | 0.3983 | 0.0005 | 0.0001 | 0.0000 | 0.4469 | 0.1169 | 0.0000 | 0.8375 | 0.0000 | 0.0270 | 1.0000 | 0.0000 | 0.3180 | 0.2653 | 0.1112 | 0.0064 | 0.0000 |
schreiber2017/mirex2017 | 0.0040 | 0.0021 | 0.0010 | 0.4784 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0014 | 0.0021 | 0.0000 | 0.0000 | 0.0000 |
schreiber2018/cnn | 0.5395 | 0.9942 | 0.9308 | 0.0159 | 0.0000 | 0.0000 | 0.1133 | 0.0197 | 0.0000 | 0.4215 | 0.0000 | 0.0093 | 0.3180 | 0.0014 | 1.0000 | 0.8271 | 0.0061 | 0.0006 | 0.0000 |
schreiber2018/fcn | 0.6931 | 0.8443 | 0.7686 | 0.0180 | 0.0000 | 0.0000 | 0.0767 | 0.0057 | 0.0000 | 0.3503 | 0.0000 | 0.0088 | 0.2653 | 0.0021 | 0.8271 | 1.0000 | 0.0097 | 0.0002 | 0.0000 |
schreiber2018/ismir2018 | 0.0040 | 0.0283 | 0.0319 | 0.0000 | 0.0197 | 0.0000 | 0.5366 | 0.8812 | 0.0000 | 0.0660 | 0.0000 | 0.9116 | 0.1112 | 0.0000 | 0.0061 | 0.0097 | 1.0000 | 0.2822 | 0.0001 |
sun2021/default | 0.0000 | 0.0001 | 0.0002 | 0.0000 | 0.1279 | 0.0000 | 0.1098 | 0.4171 | 0.0000 | 0.0026 | 0.0000 | 0.3197 | 0.0064 | 0.0000 | 0.0006 | 0.0002 | 0.2822 | 1.0000 | 0.0005 |
zplane/auftakt_v3 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0439 | 0.6915 | 0.0000 | 0.0000 | 0.6091 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0005 | 1.0000 |
Table 37: Paired t-test p-values, using reference annotations 2.0 as groundtruth with AOE2. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.
Estimator | boeck2015/tempodetector2016_default | boeck2019/multi_task | boeck2019/multi_task_hjdb | boeck2020/dar | davies2009/mirex_qm_tempotracker | echonest/version_3_2_1 | gkiokas2012/default | klapuri2006/percival2014 | oliveira2010/ibt | percival2014/stem | scheirer1998/percival2014 | schreiber2014/default | schreiber2017/ismir2017 | schreiber2017/mirex2017 | schreiber2018/cnn | schreiber2018/fcn | schreiber2018/ismir2018 | sun2021/default | zplane/auftakt_v3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
boeck2015/tempodetector2016_default | 1.0000 | 0.7400 | 0.6622 | 0.0269 | 0.0000 | 0.0000 | 0.0172 | 0.0095 | 0.0000 | 0.5518 | 0.0000 | 0.0032 | 0.1790 | 0.0048 | 0.9831 | 0.8634 | 0.0089 | 0.0000 | 0.0000 |
boeck2019/multi_task | 0.7400 | 1.0000 | 0.7429 | 0.0132 | 0.0000 | 0.0000 | 0.0687 | 0.0219 | 0.0000 | 0.7928 | 0.0000 | 0.0036 | 0.2843 | 0.0039 | 0.7518 | 0.6223 | 0.0216 | 0.0002 | 0.0000 |
boeck2019/multi_task_hjdb | 0.6622 | 0.7429 | 1.0000 | 0.0093 | 0.0000 | 0.0000 | 0.0850 | 0.0308 | 0.0000 | 0.8703 | 0.0000 | 0.0043 | 0.3149 | 0.0019 | 0.6830 | 0.5384 | 0.0249 | 0.0002 | 0.0000 |
boeck2020/dar | 0.0269 | 0.0132 | 0.0093 | 1.0000 | 0.0000 | 0.0000 | 0.0003 | 0.0000 | 0.0000 | 0.0131 | 0.0000 | 0.0000 | 0.0010 | 0.3253 | 0.0895 | 0.1014 | 0.0000 | 0.0000 | 0.0000 |
davies2009/mirex_qm_tempotracker | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0106 | 0.0047 | 0.0080 | 0.0117 | 0.0000 | 0.0000 | 0.0427 | 0.0002 | 0.0000 | 0.0000 | 0.0000 | 0.0211 | 0.1220 | 0.0492 |
echonest/version_3_2_1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0106 | 1.0000 | 0.0000 | 0.0000 | 0.7786 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.5657 |
gkiokas2012/default | 0.0172 | 0.0687 | 0.0850 | 0.0003 | 0.0047 | 0.0000 | 1.0000 | 0.6854 | 0.0000 | 0.1009 | 0.0000 | 0.4835 | 0.4056 | 0.0000 | 0.0360 | 0.0235 | 0.6609 | 0.1578 | 0.0000 |
klapuri2006/percival2014 | 0.0095 | 0.0219 | 0.0308 | 0.0000 | 0.0080 | 0.0000 | 0.6854 | 1.0000 | 0.0000 | 0.0313 | 0.0000 | 0.7636 | 0.1881 | 0.0000 | 0.0103 | 0.0028 | 0.9669 | 0.3014 | 0.0000 |
oliveira2010/ibt | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0117 | 0.7786 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0002 | 0.7299 |
percival2014/stem | 0.5518 | 0.7928 | 0.8703 | 0.0131 | 0.0000 | 0.0000 | 0.1009 | 0.0313 | 0.0000 | 1.0000 | 0.0000 | 0.0123 | 0.4247 | 0.0010 | 0.4895 | 0.4342 | 0.0178 | 0.0004 | 0.0000 |
scheirer1998/percival2014 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
schreiber2014/default | 0.0032 | 0.0036 | 0.0043 | 0.0000 | 0.0427 | 0.0000 | 0.4835 | 0.7636 | 0.0000 | 0.0123 | 0.0000 | 1.0000 | 0.0227 | 0.0000 | 0.0013 | 0.0016 | 0.7816 | 0.4201 | 0.0001 |
schreiber2017/ismir2017 | 0.1790 | 0.2843 | 0.3149 | 0.0010 | 0.0002 | 0.0000 | 0.4056 | 0.1881 | 0.0000 | 0.4247 | 0.0000 | 0.0227 | 1.0000 | 0.0000 | 0.1152 | 0.1087 | 0.1324 | 0.0089 | 0.0000 |
schreiber2017/mirex2017 | 0.0048 | 0.0039 | 0.0019 | 0.3253 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0010 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0059 | 0.0079 | 0.0000 | 0.0000 | 0.0000 |
schreiber2018/cnn | 0.9831 | 0.7518 | 0.6830 | 0.0895 | 0.0000 | 0.0000 | 0.0360 | 0.0103 | 0.0000 | 0.4895 | 0.0000 | 0.0013 | 0.1152 | 0.0059 | 1.0000 | 0.8520 | 0.0018 | 0.0001 | 0.0000 |
schreiber2018/fcn | 0.8634 | 0.6223 | 0.5384 | 0.1014 | 0.0000 | 0.0000 | 0.0235 | 0.0028 | 0.0000 | 0.4342 | 0.0000 | 0.0016 | 0.1087 | 0.0079 | 0.8520 | 1.0000 | 0.0029 | 0.0001 | 0.0000 |
schreiber2018/ismir2018 | 0.0089 | 0.0216 | 0.0249 | 0.0000 | 0.0211 | 0.0000 | 0.6609 | 0.9669 | 0.0000 | 0.0178 | 0.0000 | 0.7816 | 0.1324 | 0.0000 | 0.0018 | 0.0029 | 1.0000 | 0.3021 | 0.0001 |
sun2021/default | 0.0000 | 0.0002 | 0.0002 | 0.0000 | 0.1220 | 0.0000 | 0.1578 | 0.3014 | 0.0002 | 0.0004 | 0.0000 | 0.4201 | 0.0089 | 0.0000 | 0.0001 | 0.0001 | 0.3021 | 1.0000 | 0.0007 |
zplane/auftakt_v3 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0492 | 0.5657 | 0.0000 | 0.0000 | 0.7299 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0007 | 1.0000 |
Table 38: Paired t-test p-values, using reference annotations 1.0 as groundtruth with AOE2. H0: the true mean difference between paired samples is zero. If p<=ɑ, reject H0, i.e. we have a significant difference between estimates from the two algorithms. In the table, p-values<0.05 are set in bold.
AOE1 on cvar-Subsets
How well does an estimator perform, when only taking tracks into account that have a cvar-value of less than τ, i.e., have a more or less stable beat?
AOE1 on cvar-Subsets for 1.0 based on cvar-Values from GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28
Figure 110: Mean AOE1 compared to version 1.0 for tracks with cvar < τ based on beat annotations from 1.0.
CSV JSON LATEX PICKLE SVG PDF PNG
AOE1 on cvar-Subsets for 2.0 based on cvar-Values from GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28
Figure 111: Mean AOE1 compared to version 2.0 for tracks with cvar < τ based on beat annotations from 2.0.
CSV JSON LATEX PICKLE SVG PDF PNG
AOE1 on cvar-Subsets for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI based on cvar-Values from GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28
Figure 112: Mean AOE1 compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI for tracks with cvar < τ based on beat annotations from GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI.
CSV JSON LATEX PICKLE SVG PDF PNG
AOE1 on cvar-Subsets for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI based on cvar-Values from GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28
Figure 113: Mean AOE1 compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI for tracks with cvar < τ based on beat annotations from GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI.
CSV JSON LATEX PICKLE SVG PDF PNG
AOE2 on cvar-Subsets
How well does an estimator perform, when only taking tracks into account that have a cvar-value of less than τ, i.e., have a more or less stable beat?
AOE2 on cvar-Subsets for 1.0 based on cvar-Values from GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28
Figure 114: Mean AOE2 compared to version 1.0 for tracks with cvar < τ based on beat annotations from 1.0.
CSV JSON LATEX PICKLE SVG PDF PNG
AOE2 on cvar-Subsets for 2.0 based on cvar-Values from GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28
Figure 115: Mean AOE2 compared to version 2.0 for tracks with cvar < τ based on beat annotations from 2.0.
CSV JSON LATEX PICKLE SVG PDF PNG
AOE2 on cvar-Subsets for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI based on cvar-Values from GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28
Figure 116: Mean AOE2 compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI for tracks with cvar < τ based on beat annotations from GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI.
CSV JSON LATEX PICKLE SVG PDF PNG
AOE2 on cvar-Subsets for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI based on cvar-Values from GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28
Figure 117: Mean AOE2 compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI for tracks with cvar < τ based on beat annotations from GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI.
CSV JSON LATEX PICKLE SVG PDF PNG
AOE1 on Tempo-Subsets
How well does an estimator perform, when only taking a subset of the reference annotations into account? The graphs show mean AOE1 for reference subsets with tempi in [T-10,T+10] BPM. Note that the graphs do not show confidence intervals and that some values may be based on very few estimates.
AOE1 on Tempo-Subsets for 1.0
Figure 118: Mean AOE1 for estimates compared to version 1.0 for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
AOE1 on Tempo-Subsets for 2.0
Figure 119: Mean AOE1 for estimates compared to version 2.0 for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
AOE1 on Tempo-Subsets for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI
Figure 120: Mean AOE1 for estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
AOE1 on Tempo-Subsets for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI
Figure 121: Mean AOE1 for estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
AOE2 on Tempo-Subsets
How well does an estimator perform, when only taking a subset of the reference annotations into account? The graphs show mean AOE2 for reference subsets with tempi in [T-10,T+10] BPM. Note that the graphs do not show confidence intervals and that some values may be based on very few estimates.
AOE2 on Tempo-Subsets for 1.0
Figure 122: Mean AOE2 for estimates compared to version 1.0 for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
AOE2 on Tempo-Subsets for 2.0
Figure 123: Mean AOE2 for estimates compared to version 2.0 for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
AOE2 on Tempo-Subsets for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI
Figure 124: Mean AOE2 for estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
AOE2 on Tempo-Subsets for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI
Figure 125: Mean AOE2 for estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI for tempo intervals around T.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated AOE1 for Tempo
When fitting a generalized additive model (GAM) to AOE1-values and a ground truth, what AOE1 can we expect with confidence?
Estimated AOE1 for Tempo for 1.0
Predictions of GAMs trained on AOE1 for estimates for reference 1.0.
Figure 126: AOE1 predictions of a generalized additive model (GAM) fit to AOE1 results for 1.0. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated AOE1 for Tempo for 2.0
Predictions of GAMs trained on AOE1 for estimates for reference 2.0.
Figure 127: AOE1 predictions of a generalized additive model (GAM) fit to AOE1 results for 2.0. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated AOE1 for Tempo for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI
Predictions of GAMs trained on AOE1 for estimates for reference GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI.
Figure 128: AOE1 predictions of a generalized additive model (GAM) fit to AOE1 results for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated AOE1 for Tempo for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI
Predictions of GAMs trained on AOE1 for estimates for reference GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI.
Figure 129: AOE1 predictions of a generalized additive model (GAM) fit to AOE1 results for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated AOE2 for Tempo
When fitting a generalized additive model (GAM) to AOE2-values and a ground truth, what AOE2 can we expect with confidence?
Estimated AOE2 for Tempo for 1.0
Predictions of GAMs trained on AOE2 for estimates for reference 1.0.
Figure 130: AOE2 predictions of a generalized additive model (GAM) fit to AOE2 results for 1.0. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated AOE2 for Tempo for 2.0
Predictions of GAMs trained on AOE2 for estimates for reference 2.0.
Figure 131: AOE2 predictions of a generalized additive model (GAM) fit to AOE2 results for 2.0. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated AOE2 for Tempo for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI
Predictions of GAMs trained on AOE2 for estimates for reference GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI.
Figure 132: AOE2 predictions of a generalized additive model (GAM) fit to AOE2 results for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
Estimated AOE2 for Tempo for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI
Predictions of GAMs trained on AOE2 for estimates for reference GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI.
Figure 133: AOE2 predictions of a generalized additive model (GAM) fit to AOE2 results for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI. The 95% confidence interval around the prediction is shaded in gray.
CSV JSON LATEX PICKLE SVG PDF PNG
AOE1 for ‘tag_open’ Tags
How well does an estimator perform, when only taking tracks into account that are tagged with some kind of label? Note that some values may be based on very few estimates.
AOE1 for ‘tag_open’ Tags for 1.0
Figure 134: AOE1 of estimates compared to version 1.0 depending on tag from namespace ‘tag_open’.
AOE1 for ‘tag_open’ Tags for 2.0
Figure 135: AOE1 of estimates compared to version 2.0 depending on tag from namespace ‘tag_open’.
AOE1 for ‘tag_open’ Tags for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI
Figure 136: AOE1 of estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI depending on tag from namespace ‘tag_open’.
AOE1 for ‘tag_open’ Tags for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI
Figure 137: AOE1 of estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI depending on tag from namespace ‘tag_open’.
AOE1 for ‘tag_gtzan’ Tags
How well does an estimator perform, when only taking tracks into account that are tagged with some kind of label? Note that some values may be based on very few estimates.
AOE1 for ‘tag_gtzan’ Tags for 1.0
Figure 138: AOE1 of estimates compared to version 1.0 depending on tag from namespace ‘tag_gtzan’.
AOE1 for ‘tag_gtzan’ Tags for 2.0
Figure 139: AOE1 of estimates compared to version 2.0 depending on tag from namespace ‘tag_gtzan’.
AOE1 for ‘tag_gtzan’ Tags for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI
Figure 140: AOE1 of estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI depending on tag from namespace ‘tag_gtzan’.
AOE1 for ‘tag_gtzan’ Tags for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI
Figure 141: AOE1 of estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI depending on tag from namespace ‘tag_gtzan’.
AOE2 for ‘tag_open’ Tags
How well does an estimator perform, when only taking tracks into account that are tagged with some kind of label? Note that some values may be based on very few estimates.
AOE2 for ‘tag_open’ Tags for 1.0
Figure 142: AOE2 of estimates compared to version 1.0 depending on tag from namespace ‘tag_open’.
AOE2 for ‘tag_open’ Tags for 2.0
Figure 143: AOE2 of estimates compared to version 2.0 depending on tag from namespace ‘tag_open’.
AOE2 for ‘tag_open’ Tags for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI
Figure 144: AOE2 of estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI depending on tag from namespace ‘tag_open’.
AOE2 for ‘tag_open’ Tags for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI
Figure 145: AOE2 of estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI depending on tag from namespace ‘tag_open’.
AOE2 for ‘tag_gtzan’ Tags
How well does an estimator perform, when only taking tracks into account that are tagged with some kind of label? Note that some values may be based on very few estimates.
AOE2 for ‘tag_gtzan’ Tags for 1.0
Figure 146: AOE2 of estimates compared to version 1.0 depending on tag from namespace ‘tag_gtzan’.
AOE2 for ‘tag_gtzan’ Tags for 2.0
Figure 147: AOE2 of estimates compared to version 2.0 depending on tag from namespace ‘tag_gtzan’.
AOE2 for ‘tag_gtzan’ Tags for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI
Figure 148: AOE2 of estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_IBI depending on tag from namespace ‘tag_gtzan’.
AOE2 for ‘tag_gtzan’ Tags for GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI
Figure 149: AOE2 of estimates compared to version GTZAN-Rhythm_v2_ismir2015_lbd_2015-10-28_ICBI depending on tag from namespace ‘tag_gtzan’.
Generated by tempo_eval 0.1.1 on 2022-06-29 18:39. Size L.